BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29086874)

  • 1. Reversible uptake of molecular oxygen by heteroligand Co(II)-L-α-amino acid-imidazole systems: equilibrium models at full mass balance.
    Pająk M; Woźniczka M; Vogt A; Kufelnicki A
    Chem Cent J; 2017 Sep; 11(1):90. PubMed ID: 29086874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equilibria in cobalt(II)-amino acid-imidazole system under oxygen-free conditions: effect of side groups on mixed-ligand systems with selected L-α-amino acids.
    Woźniczka M; Vogt A; Kufelnicki A
    Chem Cent J; 2016; 10():14. PubMed ID: 27042204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. THE NATURE AND CONTROL OF REACTIONS IN BIOLUMINESCENCE : WITH SPECIAL REFERENCE TO THE MECHANISM OF REVERSIBLE AND IRREVERSIBLE INHIBITIONS BY HYDROGEN AND HYDROXYL IONS, TEMPERATURE, PRESSURE, ALCOHOL, URETHANE, AND SULFANILAMIDE IN BACTERIA.
    Johnson FH; Eyring H; Steblay R; Chaplin H; Huber C; Gherardi G
    J Gen Physiol; 1945 May; 28(5):463-537. PubMed ID: 19873433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linkage isomerism in the binding of pentapeptide Ac-His(Ala)3His-NH2 to (ethylenediamine)palladium(II): effect of the binding mode on peptide conformation.
    Hoang HN; Bryant GK; Kelso MJ; Beyer RL; Appleton TG; Fairlie DP
    Inorg Chem; 2008 Oct; 47(20):9439-49. PubMed ID: 18788796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-dioxygen adducts and the side-on peroxo dicopper(II)/bis(mu-oxo) dicopper(III) equilibrium: Significant ligand electronic effects.
    Hatcher LQ; Vance MA; Narducci Sarjeant AA; Solomon EI; Karlin KD
    Inorg Chem; 2006 Apr; 45(7):3004-13. PubMed ID: 16562956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dioxygen reactivity of copper and heme-copper complexes possessing an imidazole-phenol cross-link.
    Kim E; Kamaraj K; Galliker B; Rubie ND; Moënne-Loccoz P; Kaderli S; Zuberbühler AD; Karlin KD
    Inorg Chem; 2005 Mar; 44(5):1238-47. PubMed ID: 15732964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible Oxygenation of 2,4-Diaminobutanoic Acid-Co(II) Complexes.
    Cheng X; Huang Y; Li H; Yue F; Wen H; Wang J
    Bioinorg Chem Appl; 2016; 2016():8296365. PubMed ID: 27648004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Oxygenation of α-Amino Acid-Cobalt(II) Complexes.
    Zhang X; Yue F; Li H; Huang Y; Zhang Y; Wen H; Wang J
    Bioinorg Chem Appl; 2016; 2016():3585781. PubMed ID: 27022316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ruthenium coordination preferences in imidazole-containing systems revealed by electrospray ionization mass spectrometry and molecular modeling: Possible cues for the surprising stability of the Ru (III)/tris (hydroxymethyl)-aminomethane/imidazole complexes.
    Kaltashov IA; El Khoury A; Ren C; Savinov SN
    J Mass Spectrom; 2020 Feb; 55(2):e4435. PubMed ID: 31508870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dioxygen-binding kinetics and thermodynamics of a series of dicopper(I) complexes with bis[2-(2-pyridyl)ethyl]amine tridendate chelators forming side-on peroxo-bridged dicopper(II) adducts.
    Liang HC; Karlin KD; Dyson R; Kaderli S; Jung B; Zuberbühler AD
    Inorg Chem; 2000 Dec; 39(26):5884-94. PubMed ID: 11188519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distal metal effects in cobalt porphyrins related to CcO.
    Collman JP; Berg KE; Sunderland CJ; Aukauloo A; Vance MA; Solomon EI
    Inorg Chem; 2002 Dec; 41(25):6583-96. PubMed ID: 12470053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability and Solution Structure of Binary and Ternary Cu(II) Complexes with l-Glutamic Acid and Diamines as Well as Adducts in Metal-Free Systems in Aqueous Solution.
    Bregier-Jarzebowska R
    J Solution Chem; 2014; 43(12):2144-2162. PubMed ID: 25484474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper(I)-dioxygen reactivity of [(L)Cu(I)](+) (L = tris(2-pyridylmethyl)amine): kinetic/thermodynamic and spectroscopic studies concerning the formation of Cu-O2 and Cu2-O2 adducts as a function of solvent medium and 4-pyridyl ligand substituent variations.
    Zhang CX; Kaderli S; Costas M; Kim EI; Neuhold YM; Karlin KD; Zuberbühler AD
    Inorg Chem; 2003 Mar; 42(6):1807-24. PubMed ID: 12639113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of equilibrium constants for a sequential model of dioxygen binding by hemoglobin-inositol hexaphosphate complexes: the structural pathway from deoxy- to oxy-hemoglobin.
    Knowles FC
    Arch Biochem Biophys; 1985 Jul; 240(1):358-68. PubMed ID: 4015108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature UV-visible and NMR spectroscopic investigations of O(2) binding to ((6)L)Fe(II), a ferrous heme bearing covalently tethered axial pyridine ligands.
    Ghiladi RA; Karlin KD
    Inorg Chem; 2002 May; 41(9):2400-7. PubMed ID: 11978105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of an iron(II) dioxygen complex; a model for oxygen carrying hemeproteins.
    Collman JP; Gagne RR; Reed CA; Robinson WT; Rodley GA
    Proc Natl Acad Sci U S A; 1974 Apr; 71(4):1326-9. PubMed ID: 4524640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. (F(8)TPP)Fe(II)/O(2) reactivity studies [F(8)TPP = tetrakis(2,6-difluorophenyl)porphyrinate(2-)]: spectroscopic (UV-Visible and NMR) and kinetic study of solvent-dependent (Fe/O(2) = 1:1 or 2:1) reversible O(2)-reduction and ferryl formation.
    Ghiladi RA; Kretzer RM; Guzei I; Rheingold AL; Neuhold YM; Hatwell KR; Zuberbühler AD; Karlin KD
    Inorg Chem; 2001 Nov; 40(23):5754-67. PubMed ID: 11681882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron porphyrin-cyclodextrin supramolecular complex as a functional model of myoglobin in aqueous solution.
    Kano K; Kitagishi H; Dagallier C; Kodera M; Matsuo T; Hayashi T; Hisaeda Y; Hirota S
    Inorg Chem; 2006 May; 45(11):4448-60. PubMed ID: 16711695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilizing bound O2 in myoglobin by valine68 (E11) to asparagine substitution.
    Krzywda S; Murshudov GN; Brzozowski AM; Jaskolski M; Scott EE; Klizas SA; Gibson QH; Olson JS; Wilkinson AJ
    Biochemistry; 1998 Nov; 37(45):15896-907. PubMed ID: 9843395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes.
    Liu JG; Naruta Y; Tani F
    Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.