These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

762 related articles for article (PubMed ID: 29086918)

  • 21. Interaction between disinhibited bursting and fictive locomotor patterns in the rat isolated spinal cord.
    Beato M; Nistri A
    J Neurophysiol; 1999 Nov; 82(5):2029-38. PubMed ID: 10561384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A neonatal mouse spinal cord injury model for assessing post-injury adaptive plasticity and human stem cell integration.
    Boulland JL; Lambert FM; Züchner M; Ström S; Glover JC
    PLoS One; 2013; 8(8):e71701. PubMed ID: 23990976
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thoracic Hemisection in Rats Results in Initial Recovery Followed by a Late Decrement in Locomotor Movements, with Changes in Coordination Correlated with Serotonergic Innervation of the Ventral Horn.
    Leszczyńska AN; Majczyński H; Wilczyński GM; Sławińska U; Cabaj AM
    PLoS One; 2015; 10(11):e0143602. PubMed ID: 26606275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of the serotonergic system in locomotor recovery after spinal cord injury.
    Ghosh M; Pearse DD
    Front Neural Circuits; 2014; 8():151. PubMed ID: 25709569
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms.
    Acevedo J; Santana-Almansa A; Matos-Vergara N; Marrero-Cordero LR; Cabezas-Bou E; Díaz-Ríos M
    Neuropharmacology; 2016 Feb; 101():490-505. PubMed ID: 26493631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Sequard syndrome.
    Filli L; Zörner B; Weinmann O; Schwab ME
    Brain; 2011 Aug; 134(Pt 8):2261-73. PubMed ID: 21752788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coherence analysis of the calcium activity of putative astrocytic and neuronal cells on the L5 ventral horn and neural output in activated lumbar CPG networks.
    Yazawa I; Okazaki S; Yokota S; Takeda K; Fukushi I; Yoshizawa M; Onimaru H; Okada Y
    Neurosci Lett; 2022 Feb; 771():136421. PubMed ID: 34968723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regional distribution of the locomotor pattern-generating network in the neonatal rat spinal cord.
    Cowley KC; Schmidt BJ
    J Neurophysiol; 1997 Jan; 77(1):247-59. PubMed ID: 9120567
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of intrathecal administration of excitatory amino acid agonists and antagonists on the initiation of locomotion in the adult cat.
    Douglas JR; Noga BR; Dai X; Jordan LM
    J Neurosci; 1993 Mar; 13(3):990-1000. PubMed ID: 8095068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of Rhythmic Activity in Mammalian Spinal Networks Is Dependent on Excitability State.
    Sharples SA; Whelan PJ
    eNeuro; 2017; 4(1):. PubMed ID: 28144626
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Origin of thoracic spinal network activity during locomotor-like activity in the neonatal rat.
    Beliez L; Barrière G; Bertrand SS; Cazalets JR
    J Neurosci; 2015 Apr; 35(15):6117-30. PubMed ID: 25878284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plastic Changes in Lumbar Locomotor Networks after a Partial Spinal Cord Injury in Cats.
    Gossard JP; Delivet-Mongrain H; Martinez M; Kundu A; Escalona M; Rossignol S
    J Neurosci; 2015 Jun; 35(25):9446-55. PubMed ID: 26109667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removing sensory input disrupts spinal locomotor activity in the early postnatal period.
    Acevedo JM; Díaz-Ríos M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Dec; 199(12):1105-16. PubMed ID: 24043359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Serotonergic modulation of sacral dorsal root stimulation-induced locomotor output in newborn rat.
    Oueghlani Z; Juvin L; Lambert FM; Cardoit L; Courtand G; Masmejean F; Cazalets JR; Barrière G
    Neuropharmacology; 2020 Jun; 170():107815. PubMed ID: 31634501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regional distribution of putative rhythm-generating and pattern-forming components of the mammalian locomotor CPG.
    Griener A; Dyck J; Gosgnach S
    Neuroscience; 2013 Oct; 250():644-50. PubMed ID: 23933310
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reversible disorganization of the locomotor pattern after neonatal spinal cord transection in the rat.
    Norreel JC; Pflieger JF; Pearlstein E; Simeoni-Alias J; Clarac F; Vinay L
    J Neurosci; 2003 Mar; 23(5):1924-32. PubMed ID: 12629197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activity of Hb9 interneurons during fictive locomotion in mouse spinal cord.
    Kwan AC; Dietz SB; Webb WW; Harris-Warrick RM
    J Neurosci; 2009 Sep; 29(37):11601-13. PubMed ID: 19759307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors.
    Tegnér J; Matsushima T; el Manira A; Grillner S
    J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synergistic interaction between sensory inputs and propriospinal signalling underlying quadrupedal locomotion.
    Boulain M; Khsime I; Sourioux M; Thoby-Brisson M; Barrière G; Simmers J; Morin D; Juvin L
    J Physiol; 2021 Oct; 599(19):4477-4496. PubMed ID: 34412148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Locomotor rhythm evoked by ventrolateral funiculus stimulation in the neonatal rat spinal cord in vitro.
    Magnuson DS; Trinder TC
    J Neurophysiol; 1997 Jan; 77(1):200-6. PubMed ID: 9120561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.