These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 29087322)
1. Interplay of hemilability and redox activity in models of hydrogenase active sites. Ding S; Ghosh P; Darensbourg MY; Hall MB Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9775-E9782. PubMed ID: 29087322 [TBL] [Abstract][Full Text] [Related]
2. Hemilabile Bridging Thiolates as Proton Shuttles in Bioinspired H Ding S; Ghosh P; Lunsford AM; Wang N; Bhuvanesh N; Hall MB; Darensbourg MY J Am Chem Soc; 2016 Oct; 138(39):12920-12927. PubMed ID: 27540751 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of H2 Production by Models for the [NiFe]-Hydrogenases: Role of Reduced Hydrides. Ulloa OA; Huynh MT; Richers CP; Bertke JA; Nilges MJ; Hammes-Schiffer S; Rauchfuss TB J Am Chem Soc; 2016 Jul; 138(29):9234-45. PubMed ID: 27328053 [TBL] [Abstract][Full Text] [Related]
4. Facilitated hydride binding in an Fe-Fe hydrogenase active-site biomimic revealed by X-ray absorption spectroscopy and DFT calculations. Löscher S; Schwartz L; Stein M; Ott S; Haumann M Inorg Chem; 2007 Dec; 46(26):11094-105. PubMed ID: 18041829 [TBL] [Abstract][Full Text] [Related]
5. Comprehensive reaction mechanisms at and near the Ni-Fe active sites of [NiFe] hydrogenases. Tai H; Higuchi Y; Hirota S Dalton Trans; 2018 Mar; 47(13):4408-4423. PubMed ID: 29532823 [TBL] [Abstract][Full Text] [Related]
6. Redox active iron nitrosyl units in proton reduction electrocatalysis. Hsieh CH; Ding S; Erdem ÖF; Crouthers DJ; Liu T; McCrory CC; Lubitz W; Popescu CV; Reibenspies JH; Hall MB; Darensbourg MY Nat Commun; 2014 May; 5():3684. PubMed ID: 24785411 [TBL] [Abstract][Full Text] [Related]
7. The Molecular Proceedings of Biological Hydrogen Turnover. Haumann M; Stripp ST Acc Chem Res; 2018 Aug; 51(8):1755-1763. PubMed ID: 30001117 [TBL] [Abstract][Full Text] [Related]
8. Density functional theory calculations on the mononuclear non-heme iron active site of Hmd hydrogenase: role of the internal ligands in tuning external ligand binding and driving H2 heterolysis. Dey A J Am Chem Soc; 2010 Oct; 132(39):13892-901. PubMed ID: 20831194 [TBL] [Abstract][Full Text] [Related]
9. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere. Rauchfuss TB Acc Chem Res; 2015 Jul; 48(7):2107-16. PubMed ID: 26079848 [TBL] [Abstract][Full Text] [Related]
10. Proton Coupled Electronic Rearrangement within the H-Cluster as an Essential Step in the Catalytic Cycle of [FeFe] Hydrogenases. Sommer C; Adamska-Venkatesh A; Pawlak K; Birrell JA; Rüdiger O; Reijerse EJ; Lubitz W J Am Chem Soc; 2017 Feb; 139(4):1440-1443. PubMed ID: 28075576 [TBL] [Abstract][Full Text] [Related]
11. Scaffold-Based Functional Models of [Fe]-Hydrogenase (Hmd): Building the Bridge between Biological Structure and Molecular Function. Kerns SA; Rose MJ Acc Chem Res; 2020 Aug; 53(8):1637-1647. PubMed ID: 32786339 [TBL] [Abstract][Full Text] [Related]
12. Ligand versus metal protonation of an iron hydrogenase active site mimic. Eilers G; Schwartz L; Stein M; Zampella G; de Gioia L; Ott S; Lomoth R Chemistry; 2007; 13(25):7075-84. PubMed ID: 17566128 [TBL] [Abstract][Full Text] [Related]
13. Catalytic hydrogen production by a Ni-Ru mimic of NiFe hydrogenases involves a proton-coupled electron transfer step. Canaguier S; Fourmond V; Perotto CU; Fize J; Pécaut J; Fontecave M; Field MJ; Artero V Chem Commun (Camb); 2013 Jun; 49(44):5004-6. PubMed ID: 23612503 [TBL] [Abstract][Full Text] [Related]
14. The hydrophilic phosphatriazaadamantane ligand in the development of H2 production electrocatalysts: iron hydrogenase model complexes. Mejia-Rodriguez R; Chong D; Reibenspies JH; Soriaga MP; Darensbourg MY J Am Chem Soc; 2004 Sep; 126(38):12004-14. PubMed ID: 15382935 [TBL] [Abstract][Full Text] [Related]
15. Isolation, observation, and computational modeling of proposed intermediates in catalytic proton reductions with the hydrogenase mimic Fe2(CO)6S2C6H4. Wright RJ; Zhang W; Yang X; Fasulo M; Tilley TD Dalton Trans; 2012 Jan; 41(1):73-82. PubMed ID: 22031098 [TBL] [Abstract][Full Text] [Related]
16. [Recent advances on the structure and catalytic mechanism of hydrogenase]. Liu JJ; Long MN Sheng Wu Gong Cheng Xue Bao; 2005 May; 21(3):348-53. PubMed ID: 16108354 [TBL] [Abstract][Full Text] [Related]
17. Probing the effects of one-electron reduction and protonation on the electronic properties of the Fe-S clusters in the active-ready form of [FeFe]-hydrogenases. A QM/MM investigation. Greco C; Bruschi M; Fantucci P; Ryde U; De Gioia L Chemphyschem; 2011 Dec; 12(17):3376-82. PubMed ID: 22084023 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of electrocatalytic hydrogen production by a di-iron model of iron-iron hydrogenase: a density functional theory study of proton dissociation constants and electrode reduction potentials. Surawatanawong P; Tye JW; Darensbourg MY; Hall MB Dalton Trans; 2010 Mar; 39(12):3093-104. PubMed ID: 20221544 [TBL] [Abstract][Full Text] [Related]
19. An iron-iron hydrogenase mimic with appended electron reservoir for efficient proton reduction in aqueous media. Becker R; Amirjalayer S; Li P; Woutersen S; Reek JN Sci Adv; 2016 Jan; 2(1):e1501014. PubMed ID: 26844297 [TBL] [Abstract][Full Text] [Related]
20. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. Rakowski DuBois M; DuBois DL Acc Chem Res; 2009 Dec; 42(12):1974-82. PubMed ID: 19645445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]