These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29087326)

  • 1. Catalysis of heat-to-work conversion in quantum machines.
    Ghosh A; Latune CL; Davidovich L; Kurizki G
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12156-12161. PubMed ID: 29087326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.
    Gelbwaser-Klimovsky D; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum engine efficiency bound beyond the second law of thermodynamics.
    Niedenzu W; Mukherjee V; Ghosh A; Kofman AG; Kurizki G
    Nat Commun; 2018 Jan; 9(1):165. PubMed ID: 29323109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite-time performance of a quantum heat engine with a squeezed thermal bath.
    Wang J; He J; Ma Y
    Phys Rev E; 2019 Nov; 100(5-1):052126. PubMed ID: 31870038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of quantum Otto refrigerators with squeezing.
    Long R; Liu W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062137. PubMed ID: 26172691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale heat engine beyond the Carnot limit.
    Roßnagel J; Abah O; Schmidt-Kaler F; Singer K; Lutz E
    Phys Rev Lett; 2014 Jan; 112(3):030602. PubMed ID: 24484127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimal universal quantum heat machine.
    Gelbwaser-Klimovsky D; Alicki R; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012140. PubMed ID: 23410316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine.
    Xu YY; Chen B; Liu J
    Phys Rev E; 2018 Feb; 97(2-1):022130. PubMed ID: 29548214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Otto-type heat engine with fixed frequency.
    Matos RQ; de Assis RJ; de Almeida NG
    Phys Rev E; 2023 Nov; 108(5-1):054131. PubMed ID: 38115429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance bounds of nonadiabatic quantum harmonic Otto engine and refrigerator under a squeezed thermal reservoir.
    Singh V; Müstecaplıoğlu ÖE
    Phys Rev E; 2020 Dec; 102(6-1):062123. PubMed ID: 33466082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines.
    Kato A; Tanimura Y
    J Chem Phys; 2016 Dec; 145(22):224105. PubMed ID: 27984915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Carnot thermal machines reexamined: Definition of efficiency and the effects of strong coupling.
    Liu J; Jung KA
    Phys Rev E; 2024 Apr; 109(4-1):044118. PubMed ID: 38755899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driven spin systems as quantum thermodynamic machines: fundamental limits.
    Henrich MJ; Mahler G; Michel M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051118. PubMed ID: 17677033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of reservoir squeezing on quantum systems and work extraction.
    Huang XL; Wang T; Yi XX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051105. PubMed ID: 23214736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting work from a single heat bath via vanishing quantum coherence.
    Scully MO; Zubairy MS; Agarwal GS; Walther H
    Science; 2003 Feb; 299(5608):862-4. PubMed ID: 12511655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling thermodynamics of a quantum heat engine with modulated amplitude drivings.
    Giri SK; Goswami HP
    Phys Rev E; 2022 Aug; 106(2-1):024131. PubMed ID: 36109996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance limits of multilevel and multipartite quantum heat machines.
    Niedenzu W; Gelbwaser-Klimovsky D; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042123. PubMed ID: 26565184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual qubits, virtual temperatures, and the foundations of thermodynamics.
    Brunner N; Linden N; Popescu S; Skrzypczyk P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051117. PubMed ID: 23004713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum mechanical bound for efficiency of quantum Otto heat engine.
    Park JM; Lee S; Chun HM; Noh JD
    Phys Rev E; 2019 Jul; 100(1-1):012148. PubMed ID: 31499873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence.
    Dorfman KE; Xu D; Cao J
    Phys Rev E; 2018 Apr; 97(4-1):042120. PubMed ID: 29758726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.