These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29087326)

  • 21. Unified approach to stochastic thermodynamics: Application to a quantum heat engine.
    Das J; Biswas LRR; Bag BC
    Phys Rev E; 2020 Oct; 102(4-1):042138. PubMed ID: 33212624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hybrid microwave-cavity heat engine.
    Bergenfeldt C; Samuelsson P; Sothmann B; Flindt C; Büttiker M
    Phys Rev Lett; 2014 Feb; 112(7):076803. PubMed ID: 24579624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum optical thermodynamic machines: lasing as relaxation.
    Youssef M; Mahler G; Obada AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061129. PubMed ID: 20365140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strongly Coupled Quantum Heat Machines.
    Gelbwaser-Klimovsky D; Aspuru-Guzik A
    J Phys Chem Lett; 2015 Sep; 6(17):3477-82. PubMed ID: 26291720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic Advantage in Otto-like Two-Stroke Quantum Engines.
    Łobejko M; Biswas T; Mazurek P; Horodecki M
    Phys Rev Lett; 2024 Jun; 132(26):260403. PubMed ID: 38996292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strong Coupling Corrections in Quantum Thermodynamics.
    Perarnau-Llobet M; Wilming H; Riera A; Gallego R; Eisert J
    Phys Rev Lett; 2018 Mar; 120(12):120602. PubMed ID: 29694098
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficiency of a cyclic quantum heat engine with finite-size baths.
    Mohammady MH; Romito A
    Phys Rev E; 2019 Jul; 100(1-1):012122. PubMed ID: 31499920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Autonomous rotor heat engine.
    Roulet A; Nimmrichter S; Arrazola JM; Seah S; Scarani V
    Phys Rev E; 2017 Jun; 95(6-1):062131. PubMed ID: 28709328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental Characterization of a Spin Quantum Heat Engine.
    Peterson JPS; Batalhão TB; Herrera M; Souza AM; Sarthour RS; Oliveira IS; Serra RM
    Phys Rev Lett; 2019 Dec; 123(24):240601. PubMed ID: 31922824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement-induced operation of two-ion quantum heat machines.
    Chand S; Biswas A
    Phys Rev E; 2017 Mar; 95(3-1):032111. PubMed ID: 28415299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum frequency down-conversion of bright amplitude-squeezed states.
    Kong D; Li Z; Wang S; Wang X; Li Y
    Opt Express; 2014 Oct; 22(20):24192-201. PubMed ID: 25321994
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Atom-doped photon engine: Extracting mechanical work from a quantum system via radiation pressure.
    Tejero Á; Manzano D; Hurtado PI
    Phys Rev E; 2024 Feb; 109(2-1):024141. PubMed ID: 38491628
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Autonomous quantum thermodynamic machines.
    Tonner F; Mahler G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066118. PubMed ID: 16486021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-Atom Heat Machines Enabled by Energy Quantization.
    Gelbwaser-Klimovsky D; Bylinskii A; Gangloff D; Islam R; Aspuru-Guzik A; Vuletic V
    Phys Rev Lett; 2018 Apr; 120(17):170601. PubMed ID: 29756824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Work extremum principle: structure and function of quantum heat engines.
    Allahverdyan AE; Johal RS; Mahler G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041118. PubMed ID: 18517589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The thermodynamic cost of driving quantum systems by their boundaries.
    Barra F
    Sci Rep; 2015 Oct; 5():14873. PubMed ID: 26445899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Entanglement enhances cooling in microscopic quantum refrigerators.
    Brunner N; Huber M; Linden N; Popescu S; Silva R; Skrzypczyk P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032115. PubMed ID: 24730798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Model-free optimization of power/efficiency tradeoffs in quantum thermal machines using reinforcement learning.
    Erdman PA; Noé F
    PNAS Nexus; 2023 Aug; 2(8):pgad248. PubMed ID: 37593201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Most efficient quantum thermoelectric at finite power output.
    Whitney RS
    Phys Rev Lett; 2014 Apr; 112(13):130601. PubMed ID: 24745399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitored nonadiabatic and coherent-controlled quantum unital Otto heat engines: First four cumulants.
    El Makouri A; Slaoui A; Ahl Laamara R
    Phys Rev E; 2023 Oct; 108(4-1):044114. PubMed ID: 37978648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.