These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29087357)

  • 1. Simultaneous topography imaging and broadband nanomechanical mapping on atomic force microscope.
    Li T; Zou Q
    Nanotechnology; 2017 Dec; 28(50):505502. PubMed ID: 29087357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indentation quantification for in-liquid nanomechanical measurement of soft material using an atomic force microscope: rate-dependent elastic modulus of live cells.
    Ren J; Yu S; Gao N; Zou Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052711. PubMed ID: 24329300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid broadband discrete nanomechanical mapping of soft samples on atomic force microscope.
    Wang J; Li X; Zou Q; Su C; Lin NS
    Nanotechnology; 2020 Aug; 31(33):335705. PubMed ID: 32344391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 360° multiparametric imaging atomic force microscopy: A method for three-dimensional nanomechanical mapping.
    Lu H; Wen Y; Zhang H; Xie H; Shen Y
    Ultramicroscopy; 2019 Jan; 196():83-87. PubMed ID: 30300820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-speed atomic force microscope imaging: adaptive multiloop mode.
    Ren J; Zou Q; Li B; Lin Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012405. PubMed ID: 25122313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive-scanning, near-minimum-deformation atomic force microscope imaging of soft sample in liquid: Live mammalian cell example.
    Ren J; Zou Q
    Ultramicroscopy; 2018 Mar; 186():150-157. PubMed ID: 29335224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force.
    Ren J; Zou Q
    Rev Sci Instrum; 2014 Jul; 85(7):073706. PubMed ID: 25085145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-eigenmode control for high material contrast in bimodal and higher harmonic atomic force microscopy.
    Schuh A; Bozchalooi IS; Rangelow IW; Youcef-Toumi K
    Nanotechnology; 2015 Jun; 26(23):235706. PubMed ID: 25994333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-speed broadband monitoring of cell viscoelasticity in real time shows myosin-dependent oscillations.
    Yan B; Ren J; Zheng X; Liu Y; Zou Q
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1857-1868. PubMed ID: 28597224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-frequency multimodal atomic force microscopy.
    Nievergelt AP; Adams JD; Odermatt PD; Fantner GE
    Beilstein J Nanotechnol; 2014; 5():2459-67. PubMed ID: 25671141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of Cholesterol Repletion Effect on Nanomechanical Properties of Human Umbilical Vein Endothelial Cell Via Rapid Broadband Atomic Force Microscopy.
    Yan B; Ren J; Liu Y; Huang H; Zheng X; Zou Q
    J Biomech Eng; 2017 Mar; 139(3):. PubMed ID: 27893051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Nanomechanical and Electrochemical Mapping: Combining Peak Force Tapping Atomic Force Microscopy with Scanning Electrochemical Microscopy.
    Knittel P; Mizaikoff B; Kranz C
    Anal Chem; 2016 Jun; 88(12):6174-8. PubMed ID: 27203837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomechanical Mapping of Hard Tissues by Atomic Force Microscopy: An Application to Cortical Bone.
    Bontempi M; Salamanna F; Capozza R; Visani A; Fini M; Gambardella A
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic force microscopy of red-light photoreceptors using peakforce quantitative nanomechanical property mapping.
    Kroeger ME; Sorenson BA; Thomas JS; Stojković EA; Tsonchev S; Nicholson KT
    J Vis Exp; 2014 Oct; (92):e52164. PubMed ID: 25407118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Receptor-mediated endocytosis generates nanomechanical force reflective of ligand identity and cellular property.
    Zhang X; Ren J; Wang J; Li S; Zou Q; Gao N
    J Cell Physiol; 2018 Aug; 233(8):5908-5919. PubMed ID: 29243828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy.
    Sahin O; Erina N
    Nanotechnology; 2008 Nov; 19(44):445717. PubMed ID: 21832758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiparametric Kelvin Probe Force Microscopy for the Simultaneous Mapping of Surface Potential and Nanomechanical Properties.
    Xie H; Zhang H; Hussain D; Meng X; Song J; Sun L
    Langmuir; 2017 Mar; 33(11):2725-2733. PubMed ID: 28263608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spring constant calibration of atomic force microscope cantilevers of arbitrary shape.
    Sader JE; Sanelli JA; Adamson BD; Monty JP; Wei X; Crawford SA; Friend JR; Marusic I; Mulvaney P; Bieske EJ
    Rev Sci Instrum; 2012 Oct; 83(10):103705. PubMed ID: 23126772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photothermally excited force modulation microscopy for broadband nanomechanical property measurements.
    Wagner R; Killgore JP
    Appl Phys Lett; 2015 Nov; 107(20):. PubMed ID: 27746480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative microelastic mapping of living cells by atomic force microscopy.
    A-Hassan E; Heinz WF; Antonik MD; D'Costa NP; Nageswaran S; Schoenenberger CA; Hoh JH
    Biophys J; 1998 Mar; 74(3):1564-78. PubMed ID: 9512052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.