BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 29087384)

  • 1. PARPi focus the spotlight on replication fork protection in cancer.
    Schlacher K
    Nat Cell Biol; 2017 Oct; 19(11):1309-1310. PubMed ID: 29087384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA Damage Repair and the Emerging Role of Poly(ADP-ribose) Polymerase Inhibition in Cancer Therapeutics.
    Rabenau K; Hofstatter E
    Clin Ther; 2016 Jul; 38(7):1577-88. PubMed ID: 27368114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation.
    Rondinelli B; Gogola E; YĆ¼cel H; Duarte AA; van de Ven M; van der Sluijs R; Konstantinopoulos PA; Jonkers J; Ceccaldi R; Rottenberg S; D'Andrea AD
    Nat Cell Biol; 2017 Nov; 19(11):1371-1378. PubMed ID: 29035360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EZH2 contributes to the response to PARP inhibitors through its PARP-mediated poly-ADP ribosylation in breast cancer.
    Yamaguchi H; Du Y; Nakai K; Ding M; Chang SS; Hsu JL; Yao J; Wei Y; Nie L; Jiao S; Chang WC; Chen CH; Yu Y; Hortobagyi GN; Hung MC
    Oncogene; 2018 Jan; 37(2):208-217. PubMed ID: 28925391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resurrection of PARP Inhibitors in Breast Cancer.
    Lyons TG; Robson ME
    J Natl Compr Canc Netw; 2018 Sep; 16(9):1150-1156. PubMed ID: 30181424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replication fork stability confers chemoresistance in BRCA-deficient cells.
    Ray Chaudhuri A; Callen E; Ding X; Gogola E; Duarte AA; Lee JE; Wong N; Lafarga V; Calvo JA; Panzarino NJ; John S; Day A; Crespo AV; Shen B; Starnes LM; de Ruiter JR; Daniel JA; Konstantinopoulos PA; Cortez D; Cantor SB; Fernandez-Capetillo O; Ge K; Jonkers J; Rottenberg S; Sharan SK; Nussenzweig A
    Nature; 2016 Jul; 535(7612):382-7. PubMed ID: 27443740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PARP inhibitor resistance: the underlying mechanisms and clinical implications.
    Li H; Liu ZY; Wu N; Chen YC; Cheng Q; Wang J
    Mol Cancer; 2020 Jun; 19(1):107. PubMed ID: 32563252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of poly ADP-ribose polymerase [PARP] inhibitors in cancer cells bearing DDR defects: the rationale for their inclusion in the clinic.
    Cerrato A; Morra F; Celetti A
    J Exp Clin Cancer Res; 2016 Nov; 35(1):179. PubMed ID: 27884198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triumphs and challenges in exploiting poly(ADP-ribose) polymerase inhibition to combat triple-negative breast cancer.
    Wooten J; Mavingire N; Damar K; Loaiza-Perez A; Brantley E
    J Cell Physiol; 2023 Aug; 238(8):1625-1640. PubMed ID: 37042191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A type I combi-targeting approach for the design of molecules with enhanced potency against BRCA1/2 mutant- and O6-methylguanine-DNA methyltransferase (mgmt)- expressing tumour cells.
    Senhaji Mouhri Z; Goodfellow E; Jean-Claude B
    BMC Cancer; 2017 Aug; 17(1):540. PubMed ID: 28800752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining and Modulating 'BRCAness'.
    Byrum AK; Vindigni A; Mosammaparast N
    Trends Cell Biol; 2019 Sep; 29(9):740-751. PubMed ID: 31362850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic Lethality of PARP Inhibitors in Combination with MYC Blockade Is Independent of BRCA Status in Triple-Negative Breast Cancer.
    Carey JPW; Karakas C; Bui T; Chen X; Vijayaraghavan S; Zhao Y; Wang J; Mikule K; Litton JK; Hunt KK; Keyomarsi K
    Cancer Res; 2018 Feb; 78(3):742-757. PubMed ID: 29180466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of poly (ADP-ribose) polymerase inhibitor resistance in the treatment of BRCA1/2-mutated cancer.
    Wu S; Yao X; Sun W; Jiang K; Hao J
    Genes Chromosomes Cancer; 2024 May; 63(5):e23243. PubMed ID: 38747337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restored replication fork stabilization, a mechanism of PARP inhibitor resistance, can be overcome by cell cycle checkpoint inhibition.
    Haynes B; Murai J; Lee JM
    Cancer Treat Rev; 2018 Dec; 71():1-7. PubMed ID: 30269007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting DNA repair and replication stress in the treatment of ovarian cancer.
    Murai J
    Int J Clin Oncol; 2017 Aug; 22(4):619-628. PubMed ID: 28643177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of Early Mitotic Inhibitor 1 (EMI1) depletion on the sensitivity of PARP inhibitors in BRCA1 mutated triple-negative breast cancer cells.
    Moustafa D; Elwahed MRA; Elsaid HH; Parvin JD
    PLoS One; 2021; 16(1):e0235025. PubMed ID: 33412559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting replication gaps for cancer therapy.
    Cong K; Cantor SB
    Mol Cell; 2022 Jul; 82(13):2363-2369. PubMed ID: 35568026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse the Resistance to PARP Inhibitors.
    Kim Y; Kim A; Sharip A; Sharip A; Jiang J; Yang Q; Xie Y
    Int J Biol Sci; 2017; 13(2):198-208. PubMed ID: 28255272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency.
    Cong K; Peng M; Kousholt AN; Lee WTC; Lee S; Nayak S; Krais J; VanderVere-Carozza PS; Pawelczak KS; Calvo J; Panzarino NJ; Turchi JJ; Johnson N; Jonkers J; Rothenberg E; Cantor SB
    Mol Cell; 2021 Aug; 81(15):3128-3144.e7. PubMed ID: 34216544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells.
    Yazinski SA; Comaills V; Buisson R; Genois MM; Nguyen HD; Ho CK; Todorova Kwan T; Morris R; Lauffer S; Nussenzweig A; Ramaswamy S; Benes CH; Haber DA; Maheswaran S; Birrer MJ; Zou L
    Genes Dev; 2017 Feb; 31(3):318-332. PubMed ID: 28242626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.