These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29087690)

  • 1. Open Resonator Electric Spaser.
    Liu B; Zhu W; Gunapala SD; Stockman MI; Premaratne M
    ACS Nano; 2017 Dec; 11(12):12573-12582. PubMed ID: 29087690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spaser made of graphene and carbon nanotubes.
    Rupasinghe C; Rukhlenko ID; Premaratne M
    ACS Nano; 2014 Mar; 8(3):2431-8. PubMed ID: 24559464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid-System-Based Spaser.
    Tohari MM; Lyras A; S AlSalhi M
    Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32120985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging the dark emission of spasers.
    Chen HZ; Hu JQ; Wang S; Li B; Wang XY; Wang YL; Dai L; Ma RM
    Sci Adv; 2017 Apr; 3(4):e1601962. PubMed ID: 28439539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers.
    Kress SJP; Cui J; Rohner P; Kim DK; Antolinez FV; Zaininger KA; Jayanti SV; Richner P; McPeak KM; Poulikakos D; Norris DJ
    Sci Adv; 2017 Sep; 3(9):e1700688. PubMed ID: 28948219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface plasmon polariton amplification in a single-walled carbon nanotube.
    Kadochkin AS; Moiseev SG; Dadoenkova YS; Svetukhin VV; Zolotovskii IO
    Opt Express; 2017 Oct; 25(22):27165-27171. PubMed ID: 29092195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free electrons excited SPASER.
    Ye Y; Liu F; Cui K; Feng X; Zhang W; Huang Y
    Opt Express; 2018 Nov; 26(24):31402-31412. PubMed ID: 30650726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lasing Spaser in Photonic Crystals.
    Parkhomenko RG; Kuchyanov AS; Knez M; Stockman MI
    ACS Omega; 2021 Feb; 6(6):4417-4422. PubMed ID: 33623849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linewidth enhancement in spasers and plasmonic nanolasers.
    Ginzburg P; Zayats AV
    Opt Express; 2013 Jan; 21(2):2147-53. PubMed ID: 23389195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design optimization of spasers considering the degeneracy of excited plasmon modes.
    Rupasinghe C; Rukhlenko ID; Premaratne M
    Opt Express; 2013 Jul; 21(13):15335-49. PubMed ID: 23842320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelength-tunable spasing in the visible.
    Meng X; Kildishev AV; Fujita K; Tanaka K; Shalaev VM
    Nano Lett; 2013 Sep; 13(9):4106-12. PubMed ID: 23915034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric spaser in the extreme quantum limit.
    Li D; Stockman MI
    Phys Rev Lett; 2013 Mar; 110(10):106803. PubMed ID: 23521278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems.
    Bergman DJ; Stockman MI
    Phys Rev Lett; 2003 Jan; 90(2):027402. PubMed ID: 12570577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity.
    Meng X; Guler U; Kildishev AV; Fujita K; Tanaka K; Shalaev VM
    Sci Rep; 2013; 3():1241. PubMed ID: 23393623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of a spaser-based nanolaser.
    Noginov MA; Zhu G; Belgrave AM; Bakker R; Shalaev VM; Narimanov EE; Stout S; Herz E; Suteewong T; Wiesner U
    Nature; 2009 Aug; 460(7259):1110-2. PubMed ID: 19684572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ten years of spasers and plasmonic nanolasers.
    Azzam SI; Kildishev AV; Ma RM; Ning CZ; Oulton R; Shalaev VM; Stockman MI; Xu JL; Zhang X
    Light Sci Appl; 2020; 9():90. PubMed ID: 32509297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spaser Nanoparticles for Ultranarrow Bandwidth STED Super-Resolution Imaging.
    Gao Z; Wang JH; Song P; Kang B; Xu JJ; Chen HY
    Adv Mater; 2020 Mar; 32(9):e1907233. PubMed ID: 31957100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal nanoparticle plasmons operating within a quantum lifetime.
    Taşgın ME
    Nanoscale; 2013 Sep; 5(18):8616-24. PubMed ID: 23897124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Engineering in Plasmon Nanolasers.
    Wang D; Wang W; Knudson MP; Schatz GC; Odom TW
    Chem Rev; 2018 Mar; 118(6):2865-2881. PubMed ID: 29039939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimal spaser threshold within electrodynamic framework: Shape, size and modes.
    Arnold N; Hrelescu C; Klar TA
    Ann Phys; 2016 Apr; 528(3-4):295-306. PubMed ID: 27158151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.