These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29087690)

  • 21. Strongly Coupled Nanotube Electromechanical Resonators.
    Deng GW; Zhu D; Wang XH; Zou CL; Wang JT; Li HO; Cao G; Liu D; Li Y; Xiao M; Guo GC; Jiang KL; Dai XC; Guo GP
    Nano Lett; 2016 Sep; 16(9):5456-62. PubMed ID: 27487412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots.
    Ozel T; Nizamoglu S; Sefunc MA; Samarskaya O; Ozel IO; Mutlugun E; Lesnyak V; Gaponik N; Eychmuller A; Gaponenko SV; Demir HV
    ACS Nano; 2011 Feb; 5(2):1328-34. PubMed ID: 21247187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resonant Plasmon-Assisted Tunneling in a Double Quantum Dot Coupled to a Quantum Hall Plasmon Resonator.
    Lin C; Futamata K; Akiho T; Muraki K; Fujisawa T
    Phys Rev Lett; 2024 Jul; 133(3):036301. PubMed ID: 39094171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-level spaser for next-generation luminescent nanoprobe.
    Song P; Wang JH; Zhang M; Yang F; Lu HJ; Kang B; Xu JJ; Chen HY
    Sci Adv; 2018 Aug; 4(8):eaat0292. PubMed ID: 30128353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developing a time-domain method for simulating statistical behavior of many-emitter systems in the presence of electromagnetic field.
    Hashemi AR; Hosseini-Farzad M
    Phys Rev E; 2020 Jan; 101(1-1):013308. PubMed ID: 32069630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of Lead Halide Perovskite Based Plasmonic Nanolasers and Nanolaser Arrays by Tailoring the Substrate.
    Huang C; Sun W; Fan Y; Wang Y; Gao Y; Zhang N; Wang K; Liu S; Wang S; Xiao S; Song Q
    ACS Nano; 2018 Apr; 12(4):3865-3874. PubMed ID: 29641176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A low lasing threshold and widely tunable spaser based on two dark surface plasmons.
    Huo Y; Jia T; Ning T; Tan C; Jiang S; Yang C; Jiao Y; Man B
    Sci Rep; 2017 Oct; 7(1):13590. PubMed ID: 29051503
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scattering characteristics of an exciton-plasmon nanohybrid made by coupling a monolayer graphene nanoflake to a carbon nanotube.
    Senevirathne V; Hapuarachchi H; Mallawaarachchi S; Gunapala SD; Stockman MI; Premaratne M
    J Phys Condens Matter; 2019 Feb; 31(8):085302. PubMed ID: 30540985
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exactly solvable toy model for surface plasmon amplification by stimulated emission of radiation.
    Baranov DG; Andrianov ES; Vinogradov AP; Lisyansky AA
    Opt Express; 2013 May; 21(9):10779-91. PubMed ID: 23669935
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unidirectional Lasing from Template-Stripped Two-Dimensional Plasmonic Crystals.
    Yang A; Li Z; Knudson MP; Hryn AJ; Wang W; Aydin K; Odom TW
    ACS Nano; 2015 Dec; 9(12):11582-8. PubMed ID: 26456299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Semiconductor plasmonic nanolasers: current status and perspectives.
    Gwo S; Shih CK
    Rep Prog Phys; 2016 Aug; 79(8):086501. PubMed ID: 27459210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thresholdless nanoscale coaxial lasers.
    Khajavikhan M; Simic A; Katz M; Lee JH; Slutsky B; Mizrahi A; Lomakin V; Fainman Y
    Nature; 2012 Feb; 482(7384):204-7. PubMed ID: 22318604
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tailoring light-matter interaction with a nanoscale plasmon resonator.
    de Leon NP; Shields BJ; Yu CL; Englund DE; Akimov AV; Lukin MD; Park H
    Phys Rev Lett; 2012 Jun; 108(22):226803. PubMed ID: 23003638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Steady state superradiance of a 2D-spaser array.
    Dorofeenko AV; Zyablovsky AA; Vinogradov AP; Andrianov ES; Pukhov AA; Lisyansky AA
    Opt Express; 2013 Jun; 21(12):14539-47. PubMed ID: 23787641
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction.
    Hung YT; Huang CB; Huang JS
    Opt Express; 2012 Aug; 20(18):20342-55. PubMed ID: 23037085
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmon blockade in nanostructured graphene.
    Manjavacas A; Nordlander P; GarcĂ­a de Abajo FJ
    ACS Nano; 2012 Feb; 6(2):1724-31. PubMed ID: 22224435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Forced synchronization of spaser by an external optical wave.
    Andrianov ES; Pukhov AA; Dorofeenko AV; Vinogradov AP; Lisyansky AA
    Opt Express; 2011 Dec; 19(25):24849-57. PubMed ID: 22273878
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum-dot-induced transparency in a nanoscale plasmonic resonator.
    Wu X; Gray SK; Pelton M
    Opt Express; 2010 Nov; 18(23):23633-45. PubMed ID: 21164708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep-Ultraviolet Hyperbolic Metacavity Laser.
    Shen KC; Ku CT; Hsieh C; Kuo HC; Cheng YJ; Tsai DP
    Adv Mater; 2018 May; 30(21):e1706918. PubMed ID: 29633385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Circular quantum wire symmetrically loaded with a graphene strip as the plasmonic micro/nano laser: threshold conditions analysis.
    Kaliberda ME; Pogarsky SA; Kostenko OV; Nosych OI; Zinenko TL
    Opt Express; 2024 Mar; 32(7):12213-12227. PubMed ID: 38571051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.