BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29087704)

  • 1. New Intracellular Shikimic Acid Biosensor for Monitoring Shikimate Synthesis in Corynebacterium glutamicum.
    Liu C; Zhang B; Liu YM; Yang KQ; Liu SJ
    ACS Synth Biol; 2018 Feb; 7(2):591-601. PubMed ID: 29087704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and expression analysis of a gene encoding a shikimate transporter of Corynebacterium glutamicum.
    Kubota T; Tanaka Y; Takemoto N; Hiraga K; Yukawa H; Inui M
    Microbiology (Reading); 2015 Feb; 161(Pt 2):254-263. PubMed ID: 25406451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of CRISPRi in Corynebacterium glutamicum for shikimic acid production.
    Zhang B; Liu ZQ; Liu C; Zheng YG
    Biotechnol Lett; 2016 Dec; 38(12):2153-2161. PubMed ID: 27623797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of a hybrid route to enhance shikimic acid production in Corynebacterium glutamicum.
    Zhang B; Jiang CY; Liu YM; Liu C; Liu SJ
    Biotechnol Lett; 2015 Sep; 37(9):1861-8. PubMed ID: 25967037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production.
    Syukur Purwanto H; Kang MS; Ferrer L; Han SS; Lee JY; Kim HS; Lee JH
    J Biotechnol; 2018 Sep; 282():92-100. PubMed ID: 30031819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosome binding site libraries and pathway modules for shikimic acid synthesis with Corynebacterium glutamicum.
    Zhang B; Zhou N; Liu YM; Liu C; Lou CB; Jiang CY; Liu SJ
    Microb Cell Fact; 2015 May; 14():71. PubMed ID: 25981633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum.
    Zhang X; Zhang X; Xu G; Zhang X; Shi J; Xu Z
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):5939-5951. PubMed ID: 29725721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shikimate Metabolic Pathway Engineering in
    Park E; Kim HJ; Seo SY; Lee HN; Choi SS; Lee SJ; Kim ES
    J Microbiol Biotechnol; 2021 Sep; 31(9):1305-1310. PubMed ID: 34373439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Transcription Factor-Based Diamine Biosensor in
    Zhao N; Song J; Zhang H; Lin Y; Han S; Huang Y; Zheng S
    ACS Synth Biol; 2021 Nov; 10(11):3074-3083. PubMed ID: 34662101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chorismate-dependent transcriptional regulation of quinate/shikimate utilization genes by LysR-type transcriptional regulator QsuR in Corynebacterium glutamicum: carbon flow control at metabolic branch point.
    Kubota T; Tanaka Y; Takemoto N; Watanabe A; Hiraga K; Inui M; Yukawa H
    Mol Microbiol; 2014 Apr; 92(2):356-68. PubMed ID: 24674055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.
    Mahr R; Gätgens C; Gätgens J; Polen T; Kalinowski J; Frunzke J
    Metab Eng; 2015 Nov; 32():184-194. PubMed ID: 26453945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A secretion biosensor for monitoring Sec-dependent protein export in Corynebacterium glutamicum.
    Jurischka S; Bida A; Dohmen-Olma D; Kleine B; Potzkei J; Binder S; Schaumann G; Bakkes PJ; Freudl R
    Microb Cell Fact; 2020 Jan; 19(1):11. PubMed ID: 31964372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Bacterial Biosensor for Rapid Screening of Yeast p-Coumaric Acid Production.
    Siedler S; Khatri NK; Zsohár A; Kjærbølling I; Vogt M; Hammar P; Nielsen CF; Marienhagen J; Sommer MOA; Joensson HN
    ACS Synth Biol; 2017 Oct; 6(10):1860-1869. PubMed ID: 28532147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a single-cell GlxR-based cAMP biosensor for Corynebacterium glutamicum.
    Schulte J; Baumgart M; Bott M
    J Biotechnol; 2017 Sep; 258():33-40. PubMed ID: 28698098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of expression of genes involved in quinate and shikimate utilization in Corynebacterium glutamicum.
    Teramoto H; Inui M; Yukawa H
    Appl Environ Microbiol; 2009 Jun; 75(11):3461-8. PubMed ID: 19376919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Corynebacterium glutamicum for the production of anthranilate from glucose and xylose.
    Mutz M; Brüning V; Brüsseler C; Müller MF; Noack S; Marienhagen J
    Microb Biotechnol; 2024 Jan; 17(1):e14388. PubMed ID: 38206123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction.
    Kogure T; Kubota T; Suda M; Hiraga K; Inui M
    Metab Eng; 2016 Nov; 38():204-216. PubMed ID: 27553883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable integration of the Mrx1-roGFP2 biosensor to monitor dynamic changes of the mycothiol redox potential in Corynebacterium glutamicum.
    Tung QN; Loi VV; Busche T; Nerlich A; Mieth M; Milse J; Kalinowski J; Hocke AC; Antelmann H
    Redox Biol; 2019 Jan; 20():514-525. PubMed ID: 30481728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring in vivo metabolic flux with a designed whole-cell metabolite biosensor of shikimic acid.
    Li H; Liang C; Chen W; Jin JM; Tang SY; Tao Y
    Biosens Bioelectron; 2017 Dec; 98():457-465. PubMed ID: 28715793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An enzymatic colorimetric whole-cell biosensor for high-throughput identification of lysine overproducers.
    Liu J; Xu JZ; Rao ZM; Zhang WG
    Biosens Bioelectron; 2022 Nov; 216():114681. PubMed ID: 36087402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.