BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29087704)

  • 21. Characterization of shikimate dehydrogenase homologues of Corynebacterium glutamicum.
    Kubota T; Tanaka Y; Hiraga K; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8139-49. PubMed ID: 23306642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum.
    Brune I; Werner H; Hüser AT; Kalinowski J; Pühler A; Tauch A
    BMC Genomics; 2006 Feb; 7():21. PubMed ID: 16469103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains.
    Mustafi N; Grünberger A; Mahr R; Helfrich S; Nöh K; Blombach B; Kohlheyer D; Frunzke J
    PLoS One; 2014; 9(1):e85731. PubMed ID: 24465669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria.
    Yang D; Kim WJ; Yoo SM; Choi JH; Ha SH; Lee MH; Lee SY
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):9835-9844. PubMed ID: 30232266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic Control of 4-Hydroxyisoleucine Biosynthesis by Modified l-Isoleucine Biosensor in Recombinant
    Tan S; Shi F; Liu H; Yu X; Wei S; Fan Z; Li Y
    ACS Synth Biol; 2020 Sep; 9(9):2378-2389. PubMed ID: 32813974
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering with adaptive laboratory evolution for phenylalanine production by Corynebacterium glutamicum.
    Tachikawa Y; Okuno M; Itoh T; Hirasawa T
    J Biosci Bioeng; 2024 May; 137(5):344-353. PubMed ID: 38365536
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shikimic acid biosynthesis in microorganisms: Current status and future direction.
    Sheng Q; Yi L; Zhong B; Wu X; Liu L; Zhang B
    Biotechnol Adv; 2023; 62():108073. PubMed ID: 36464143
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Henke NA; Austermeier S; Grothaus IL; Götker S; Persicke M; Peters-Wendisch P; Wendisch VF
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32751941
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic control analysis of L-tryptophan producing Escherichia coli applying targeted perturbation with shikimate.
    Schoppel K; Trachtmann N; Mittermeier F; Sprenger GA; Weuster-Botz D
    Bioprocess Biosyst Eng; 2021 Dec; 44(12):2591-2613. PubMed ID: 34519841
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic Engineering of Shikimic Acid-Producing
    Sato N; Kishida M; Nakano M; Hirata Y; Tanaka T
    Front Bioeng Biotechnol; 2020; 8():569406. PubMed ID: 33015020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosensor-guided improvements in salicylate production by recombinant Escherichia coli.
    Qian S; Li Y; Cirino PC
    Microb Cell Fact; 2019 Jan; 18(1):18. PubMed ID: 30696431
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate.
    Koch DJ; Rückert C; Albersmeier A; Hüser AT; Tauch A; Pühler A; Kalinowski J
    Mol Microbiol; 2005 Oct; 58(2):480-94. PubMed ID: 16194234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids.
    Mustafi N; Grünberger A; Kohlheyer D; Bott M; Frunzke J
    Metab Eng; 2012 Jul; 14(4):449-57. PubMed ID: 22583745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: Detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model.
    Kohl TA; Tauch A
    J Biotechnol; 2009 Sep; 143(4):239-46. PubMed ID: 19665500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A synthetic biology approach to study carotenoid production in Corynebacterium glutamicum: Read-out by a genetically encoded biosensor combined with perturbing native gene expression by CRISPRi.
    Henke NA; Göttl VL; Schmitt I; Peters-Wendisch P; Wendisch VF
    Methods Enzymol; 2022; 671():383-419. PubMed ID: 35878987
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptional regulators of multiple genes involved in carbon metabolism in Corynebacterium glutamicum.
    Teramoto H; Inui M; Yukawa H
    J Biotechnol; 2011 Jul; 154(2-3):114-25. PubMed ID: 21277916
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protocatechuate overproduction by Corynebacterium glutamicum via simultaneous engineering of native and heterologous biosynthetic pathways.
    Kogure T; Suda M; Hiraga K; Inui M
    Metab Eng; 2021 May; 65():232-242. PubMed ID: 33238211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative analysis of Corynebacterium glutamicum genomes: a new perspective for the industrial production of amino acids.
    Yang J; Yang S
    BMC Genomics; 2017 Jan; 18(Suppl 1):940. PubMed ID: 28198668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering and application of a biosensor with focused ligand specificity.
    Della Corte D; van Beek HL; Syberg F; Schallmey M; Tobola F; Cormann KU; Schlicker C; Baumann PT; Krumbach K; Sokolowsky S; Morris CJ; Grünberger A; Hofmann E; Schröder GF; Marienhagen J
    Nat Commun; 2020 Sep; 11(1):4851. PubMed ID: 32978386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced Biosynthesis of Hyaluronic Acid Using Engineered Corynebacterium glutamicum Via Metabolic Pathway Regulation.
    Cheng F; Luozhong S; Guo Z; Yu H; Stephanopoulos G
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28869338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.