These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29087722)

  • 1. Ballistic Phonon Penetration Depth in Amorphous Silicon Dioxide.
    Yang L; Zhang Q; Cui Z; Gerboth M; Zhao Y; Xu TT; Walker DG; Li D
    Nano Lett; 2017 Dec; 17(12):7218-7225. PubMed ID: 29087722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ballistic phonon transport in holey silicon.
    Lee J; Lim J; Yang P
    Nano Lett; 2015 May; 15(5):3273-9. PubMed ID: 25861026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal Transport in Quasi-1D van der Waals Crystal Ta
    Zhang Q; Liu C; Liu X; Liu J; Cui Z; Zhang Y; Yang L; Zhao Y; Xu TT; Chen Y; Wei J; Mao Z; Li D
    ACS Nano; 2018 Mar; 12(3):2634-2642. PubMed ID: 29474086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonon-interface scattering in multilayer graphene on an amorphous support.
    Sadeghi MM; Jo I; Shi L
    Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16321-6. PubMed ID: 24067656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasi-Ballistic Thermal Transport Across MoS
    Sood A; Xiong F; Chen S; Cheaito R; Lian F; Asheghi M; Cui Y; Donadio D; Goodson KE; Pop E
    Nano Lett; 2019 Apr; 19(4):2434-2442. PubMed ID: 30808167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance.
    Regner KT; Sellan DP; Su Z; Amon CH; McGaughey AJ; Malen JA
    Nat Commun; 2013; 4():1640. PubMed ID: 23535661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide.
    Lv W; Henry A
    Sci Rep; 2016 Oct; 6():35720. PubMed ID: 27767082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bulk-like Intrinsic Phonon Thermal Conductivity of Micrometer-Thick AlN Films.
    Koh YR; Cheng Z; Mamun A; Bin Hoque MS; Liu Z; Bai T; Hussain K; Liao ME; Li R; Gaskins JT; Giri A; Tomko J; Braun JL; Gaevski M; Lee E; Yates L; Goorsky MS; Luo T; Khan A; Graham S; Hopkins PE
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29443-29450. PubMed ID: 32491824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature and Thickness Dependence of the Thermal Conductivity in 2D Ferromagnet Fe
    Claro MS; Corral-Sertal J; Fumega AO; Blanco-Canosa S; Suárez-Rodríguez M; Hueso LE; Pardo V; Rivadulla F
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49538-49544. PubMed ID: 37846079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal transport through fishbone silicon nanoribbons: unraveling the role of Sharvin resistance.
    Yang L; Zhao Y; Zhang Q; Yang J; Li D
    Nanoscale; 2019 Apr; 11(17):8196-8203. PubMed ID: 30990504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane.
    Johnson JA; Maznev AA; Cuffe J; Eliason JK; Minnich AJ; Kehoe T; Torres CM; Chen G; Nelson KA
    Phys Rev Lett; 2013 Jan; 110(2):025901. PubMed ID: 23383915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-Dependent Mean Free Path Spectra of Thermal Phonons Along the c-Axis of Graphite.
    Zhang H; Chen X; Jho YD; Minnich AJ
    Nano Lett; 2016 Mar; 16(3):1643-9. PubMed ID: 26840052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thickness-Dependent Thermal Conductivity and Phonon Mean Free Path Distribution in Single-Crystalline Barium Titanate.
    Negi A; Rodriguez A; Zhang X; Comstock AH; Yang C; Sun D; Jiang X; Kumah D; Hu M; Liu J
    Adv Sci (Weinh); 2023 Jul; 10(19):e2301273. PubMed ID: 37092575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Super-Ballistic Width Dependence of Thermal Conductivity in Graphite Nanoribbons and Microribbons.
    Huang X; Masubuchi S; Watanabe K; Taniguchi T; Machida T; Nomura M
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal transport in multilayer silicon carbide nanoribbons: reverse non-equilibrium molecular dynamics.
    Zanane FZ; Drissi LB; Saidi EH; Bousmina M; Fehri OF
    Phys Chem Chem Phys; 2024 Feb; 26(6):5414-5428. PubMed ID: 38275005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic-Scale Surface Engineering for Giant Thermal Transport Enhancement Across 2D/3D van der Waals Interfaces.
    Wang Q; Zhang J; Xiong Y; Li S; Chernysh V; Liu X
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3377-3386. PubMed ID: 36608269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal properties of amorphous/crystalline silicon superlattices.
    France-Lanord A; Merabia S; Albaret T; Lacroix D; Termentzidis K
    J Phys Condens Matter; 2014 Sep; 26(35):355801. PubMed ID: 25105883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropy Reversal of Thermal Conductivity in Silicon Nanowire Networks Driven by Quasi-Ballistic Phonon Transport.
    Kim B; Barbier-Chebbah F; Ogawara Y; Jalabert L; Yanagisawa R; Anufriev R; Nomura M
    ACS Nano; 2024 Apr; 18(15):10557-10565. PubMed ID: 38575375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Heat Transport Across Epitaxial Lattice-Mismatched van der Waals Heterointerfaces.
    Chavez-Angel E; Tsipas P; Xiao P; Ahmadi MT; Daaoub AHS; Sadeghi H; Sotomayor Torres CM; Dimoulas A; Sachat AE
    Nano Lett; 2023 Aug; 23(15):6883-6891. PubMed ID: 37467035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ballistic to diffusive crossover of heat flow in graphene ribbons.
    Bae MH; Li Z; Aksamija Z; Martin PN; Xiong F; Ong ZY; Knezevic I; Pop E
    Nat Commun; 2013; 4():1734. PubMed ID: 23591901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.