These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29088167)

  • 1. Compact broadband spectrometer based on upconversion and downconversion luminescence.
    Yang T; Peng JX; Li XA; Shen X; Zhou XH; Huang XL; Huang W; Ho HP
    Opt Lett; 2017 Nov; 42(21):4375-4378. PubMed ID: 29088167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact terahertz spectrometer based on sequential modulation of disordered rough surfaces.
    Yang T; Zhang Y; Ge JC; Wang L; Qin YQ; Zhu YY; Huang W; Ho HP
    Opt Lett; 2019 Dec; 44(24):6061-6064. PubMed ID: 32628221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-fiber spectrometer based on speckle pattern reconstruction.
    Redding B; Popoff SM; Cao H
    Opt Express; 2013 Mar; 21(5):6584-600. PubMed ID: 23482230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noise analysis of spectrometers based on speckle pattern reconstruction.
    Redding B; Popoff SM; Bromberg Y; Choma MA; Cao H
    Appl Opt; 2014 Jan; 53(3):410-7. PubMed ID: 24514126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational spectrometer based on a broadband diffractive optic.
    Wang P; Menon R
    Opt Express; 2014 Jun; 22(12):14575-87. PubMed ID: 24977553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical frequency comb spectroscopy.
    Foltynowicz A; Masłowski P; Ban T; Adler F; Cossel KC; Briles TC; Ye J
    Faraday Discuss; 2011; 150():23-31; discussion 113-60. PubMed ID: 22457942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A foil-mask spectrometer for laue pattern imaging: simultaneous position, intensity and energy.
    Hanley QS; Dunphy DR; Denton MB
    J Synchrotron Radiat; 1996 May; 3(Pt 3):101-11. PubMed ID: 16702667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proposal for noise-free visible-telecom quantum frequency conversion through third-order sum and difference frequency generation.
    Lu X; Moille G; Rao A; Srinivasan K
    Opt Lett; 2021 Jan; 46(2):222-225. PubMed ID: 33448992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniature spectrometer based on diffraction in a dispersive hole array.
    Yang T; Xu C; Ho HP; Zhu YY; Hong XH; Wang QJ; Chen YC; Li XA; Zhou XH; Yi MD; Huang W
    Opt Lett; 2015 Jul; 40(13):3217-20. PubMed ID: 26125406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband high-spectral-resolution ultraviolet-visible coherent-dispersion imaging spectrometer.
    Yang Q
    Opt Express; 2018 Aug; 26(16):20777-20791. PubMed ID: 30119383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Transition Element Speciation in Glasses Using a Portable Transmission Ultraviolet-Visible-Near-Infrared (UV-Vis-NIR) Spectrometer.
    Hunault M; Lelong G; Gauthier M; Gélébart F; Ismael S; Galoisy L; Bauchau F; Loisel C; Calas G
    Appl Spectrosc; 2016 May; 70(5):778-84. PubMed ID: 26988660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherent-dispersion spectrometer for the ultraviolet and visible regions.
    Yang Q
    Opt Express; 2018 May; 26(10):12372-12386. PubMed ID: 29801272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-area-array coherent-dispersion stereo-imaging spectrometer.
    Yang Q
    Opt Express; 2019 Jan; 27(2):1025-1044. PubMed ID: 30696175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High resolution compact spectrometer system based on scattering and spectral reconstruction.
    Wang X; Sun Q; Chu Y; Brambilla G; Wang P; Beresna M
    Opt Lett; 2023 Mar; 48(6):1466-1469. PubMed ID: 36946954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First order design of compact, broadband, high spectral resolution ultraviolet-visible imaging spectrometer.
    Yang Q
    Opt Express; 2020 Feb; 28(4):5587-5601. PubMed ID: 32121776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband Spectrometer with Single-Photon Sensitivity Exploiting Tailored Disorder.
    Hartmann W; Varytis P; Gehring H; Walter N; Beutel F; Busch K; Pernice W
    Nano Lett; 2020 Apr; 20(4):2625-2631. PubMed ID: 32160472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral response of an upconversion detector and spectrometer.
    Kuo PS; Slattery O; Kim YS; Pelc JS; Fejer MM; Tang X
    Opt Express; 2013 Sep; 21(19):22523-31. PubMed ID: 24104141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Huge enhancement of upconversion luminescence by broadband dye sensitization of core/shell nanocrystals.
    Yin D; Liu Y; Tang J; Zhao F; Chen Z; Zhang T; Zhang X; Chang N; Wu C; Chen D; Wu M
    Dalton Trans; 2016 Sep; 45(34):13392-8. PubMed ID: 27484165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a compact wide-spectrum double-channel prism imaging spectrometer with freeform surface.
    Feng L; Zhou J; Wei L; He X; Li Y; Jing J; Xiangli B
    Appl Opt; 2018 Nov; 57(31):9512-9522. PubMed ID: 30462000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral evidence for multi-pathway contribution to the upconversion pathway in NaYF
    Cho Y; Song SW; Lim SY; Kim JH; Park CR; Kim HM
    Phys Chem Chem Phys; 2017 Mar; 19(10):7326-7332. PubMed ID: 28239708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.