BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 29088492)

  • 1. Retrieving Groundwater Depletion and Drought in the Tigris-Euphrates Basin Between 2003 and 2015.
    Chao N; Luo Z; Wang Z; Jin T
    Ground Water; 2018 Sep; 56(5):770-782. PubMed ID: 29088492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-decadal assessment of water budget and hydrological extremes in the Tigris-Euphrates Basin using satellites, modeling, and in-situ data.
    Rateb A; Scanlon BR; Kuo CY
    Sci Total Environ; 2021 Apr; 766():144337. PubMed ID: 33421786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal distribution of groundwater drought using GRACE-based satellite estimates: a case study of Lower Gangetic Basin, India.
    Nandi S; Biswas S
    Environ Monit Assess; 2024 Jan; 196(2):151. PubMed ID: 38225529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region.
    Voss KA; Famiglietti JS; Lo M; Linage C; Rodell M; Swenson SC
    Water Resour Res; 2013 Feb; 49(2):904-914. PubMed ID: 23658469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drought evaluation using the GRACE terrestrial water storage deficit over the Yangtze River Basin, China.
    Sun Z; Zhu X; Pan Y; Zhang J; Liu X
    Sci Total Environ; 2018 Sep; 634():727-738. PubMed ID: 29649717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global groundwater droughts are more severe than they appear in hydrological models: An investigation through a Bayesian merging of GRACE and GRACE-FO data with a water balance model.
    Forootan E; Mehrnegar N; Schumacher M; Schiettekatte LAR; Jagdhuber T; Farzaneh S; van Dijk AIJM; Shamsudduha M; Shum CK
    Sci Total Environ; 2024 Feb; 912():169476. PubMed ID: 38145671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Groundwater depletion during drought threatens future water security of the Colorado River Basin.
    Castle SL; Thomas BF; Reager JT; Rodell M; Swenson SC; Famiglietti JS
    Geophys Res Lett; 2014 Aug; 41(16):5904-5911. PubMed ID: 25821273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools.
    Iqbal N; Hossain F; Lee H; Akhter G
    Environ Monit Assess; 2017 Mar; 189(3):128. PubMed ID: 28243930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated Hydrologic Modeling to Untangle the Impacts of Water Management During Drought.
    Thatch LM; Gilbert JM; Maxwell RM
    Ground Water; 2020 May; 58(3):377-391. PubMed ID: 32129878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrological drought evaluation using GRACE satellite-based drought index over the lake basins, East Africa.
    Seka AM; Zhang J; Zhang D; Ayele EG; Han J; Prodhan FA; Zhang G; Liu Q
    Sci Total Environ; 2022 Dec; 852():158425. PubMed ID: 36063925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global analysis of the correlation and propagation among meteorological, agricultural, surface water, and groundwater droughts.
    Liu Y; Shan F; Yue H; Wang X; Fan Y
    J Environ Manage; 2023 May; 333():117460. PubMed ID: 36758412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning based downscaling of GRACE-estimated groundwater in Central Valley, California.
    Agarwal V; Akyilmaz O; Shum CK; Feng W; Yang TY; Forootan E; Syed TH; Haritashya UK; Uz M
    Sci Total Environ; 2023 Mar; 865():161138. PubMed ID: 36586696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrological drought characterization based on GNSS imaging of vertical crustal deformation across the contiguous United States.
    Jiang Z; Hsu YJ; Yuan L; Tang M; Yang X; Yang X
    Sci Total Environ; 2022 Jun; 823():153663. PubMed ID: 35124040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking seasonal and monthly drought with GRACE-based terrestrial water storage assessments over major river basins in South India.
    Satish Kumar K; Venkata Rathnam E; Sridhar V
    Sci Total Environ; 2021 Apr; 763():142994. PubMed ID: 33129527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Terrestrial Water Storage Changes and Major Driving Factors Analysis in Inner Mongolia, China.
    Guo Y; Gan F; Yan B; Bai J; Xing N; Zhuo Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the utility of remote sensing data to accurately estimate changes in groundwater storage.
    Ahamed A; Knight R; Alam S; Pauloo R; Melton F
    Sci Total Environ; 2022 Feb; 807(Pt 1):150635. PubMed ID: 34606871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Groundwater Storage Change in the Jinsha River Basin from GRACE, Hydrologic Models, and In Situ Data.
    Chao N; Chen G; Li J; Xiang L; Wang Z; Tian K
    Ground Water; 2020 Sep; 58(5):735-748. PubMed ID: 31773723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. When trends intersect: The challenge of protecting freshwater ecosystems under multiple land use and hydrological intensification scenarios.
    Davis J; O'Grady AP; Dale A; Arthington AH; Gell PA; Driver PD; Bond N; Casanova M; Finlayson M; Watts RJ; Capon SJ; Nagelkerken I; Tingley R; Fry B; Page TJ; Specht A
    Sci Total Environ; 2015 Nov; 534():65-78. PubMed ID: 25864797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overview of terrestrial water storage changes over the Indus River Basin based on GRACE/GRACE-FO solutions.
    Zhu Y; Liu S; Yi Y; Xie F; Grünwald R; Miao W; Wu K; Qi M; Gao Y; Singh D
    Sci Total Environ; 2021 Dec; 799():149366. PubMed ID: 34352463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatio-temporal dynamics of groundwater storage changes in the Yellow River Basin.
    Lin M; Biswas A; Bennett EM
    J Environ Manage; 2019 Apr; 235():84-95. PubMed ID: 30677659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.