These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 29088723)
1. Dysfunctional transcripts are formed by alternative polyadenylation in OPMD. Raz V; Dickson G; 't Hoen PAC Oncotarget; 2017 Sep; 8(43):73516-73528. PubMed ID: 29088723 [TBL] [Abstract][Full Text] [Related]
2. PABPN1 loss-of-function causes APA-shift in oculopharyngeal muscular dystrophy. Shademan M; Mei H; van Engelen B; Ariyurek Y; Kloet S; Raz V HGG Adv; 2024 Apr; 5(2):100269. PubMed ID: 38213032 [TBL] [Abstract][Full Text] [Related]
3. PABPN1-Dependent mRNA Processing Induces Muscle Wasting. Riaz M; Raz Y; van Putten M; Paniagua-Soriano G; Krom YD; Florea BI; Raz V PLoS Genet; 2016 May; 12(5):e1006031. PubMed ID: 27152426 [TBL] [Abstract][Full Text] [Related]
4. Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation. de Klerk E; Venema A; Anvar SY; Goeman JJ; Hu O; Trollet C; Dickson G; den Dunnen JT; van der Maarel SM; Raz V; 't Hoen PA Nucleic Acids Res; 2012 Oct; 40(18):9089-101. PubMed ID: 22772983 [TBL] [Abstract][Full Text] [Related]
5. Oculopharyngeal muscular dystrophy as a paradigm for muscle aging. Raz Y; Raz V Front Aging Neurosci; 2014; 6():317. PubMed ID: 25426070 [TBL] [Abstract][Full Text] [Related]
6. Alternative Polyadenylation Utilization Results in Ribosome Assembly and mRNA Translation Deficiencies in a Model for Muscle Aging. Mei H; Boom J; El Abdellaoui S; Abdelmohsen K; Munk R; Martindale JL; Kloet S; Kielbasa SM; Sharp TH; Gorospe M; Raz V J Gerontol A Biol Sci Med Sci; 2022 Jun; 77(6):1130-1140. PubMed ID: 35245938 [TBL] [Abstract][Full Text] [Related]
7. Pharyngeal pathology in a mouse model of oculopharyngeal muscular dystrophy is associated with impaired basal autophagy in myoblasts. Zhang Y; Zeuthen C; Zhu C; Wu F; Mezzell AT; Whitlow TJ; Choo HJ; Vest KE Front Cell Dev Biol; 2022; 10():986930. PubMed ID: 36313551 [TBL] [Abstract][Full Text] [Related]
8. The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Jenal M; Elkon R; Loayza-Puch F; van Haaften G; Kühn U; Menzies FM; Oude Vrielink JA; Bos AJ; Drost J; Rooijers K; Rubinsztein DC; Agami R Cell; 2012 Apr; 149(3):538-53. PubMed ID: 22502866 [TBL] [Abstract][Full Text] [Related]
9. Nuclear entrapment and extracellular depletion of PCOLCE is associated with muscle degeneration in oculopharyngeal muscular dystrophy. Raz V; Sterrenburg E; Routledge S; Venema A; van der Sluijs BM; Trollet C; Dickson G; van Engelen BG; van der Maarel SM; Antoniou MN BMC Neurol; 2013 Jul; 13():70. PubMed ID: 23815790 [TBL] [Abstract][Full Text] [Related]
10. Implications of polyadenylation in health and disease. Curinha A; Oliveira Braz S; Pereira-Castro I; Cruz A; Moreira A Nucleus; 2014; 5(6):508-19. PubMed ID: 25484187 [TBL] [Abstract][Full Text] [Related]
11. A decline in PABPN1 induces progressive muscle weakness in oculopharyngeal muscle dystrophy and in muscle aging. Anvar SY; Raz Y; Verway N; van der Sluijs B; Venema A; Goeman JJ; Vissing J; van der Maarel SM; 't Hoen PA; van Engelen BG; Raz V Aging (Albany NY); 2013 Jun; 5(6):412-26. PubMed ID: 23793615 [TBL] [Abstract][Full Text] [Related]
12. An alanine expanded PABPN1 causes increased utilization of intronic polyadenylation sites. Abbassi-Daloii T; Yousefi S; de Klerk E; Grossouw L; Riaz M; 't Hoen PAC; Raz V NPJ Aging Mech Dis; 2017; 3():6. PubMed ID: 28649424 [TBL] [Abstract][Full Text] [Related]
13. Mitochondrial dysfunction reveals the role of mRNA poly(A) tail regulation in oculopharyngeal muscular dystrophy pathogenesis. Chartier A; Klein P; Pierson S; Barbezier N; Gidaro T; Casas F; Carberry S; Dowling P; Maynadier L; Bellec M; Oloko M; Jardel C; Moritz B; Dickson G; Mouly V; Ohlendieck K; Butler-Browne G; Trollet C; Simonelig M PLoS Genet; 2015 Mar; 11(3):e1005092. PubMed ID: 25816335 [TBL] [Abstract][Full Text] [Related]
14. An Antibody to Detect Alanine-Expanded PABPN1: A New Tool to Study Oculopharyngeal Muscular Dystrophy. Vest KE; Apponi LH; Banerjee A; Pavlath GK; Corbett AH J Neuromuscul Dis; 2015 Oct; 2(4):439-446. PubMed ID: 27858752 [TBL] [Abstract][Full Text] [Related]
15. Oculopharyngeal muscular dystrophy: recent advances in the understanding of the molecular pathogenic mechanisms and treatment strategies. Abu-Baker A; Rouleau GA Biochim Biophys Acta; 2007 Feb; 1772(2):173-85. PubMed ID: 17110089 [TBL] [Abstract][Full Text] [Related]
16. Cytoplasmic targeting of mutant poly(A)-binding protein nuclear 1 suppresses protein aggregation and toxicity in oculopharyngeal muscular dystrophy. Abu-Baker A; Laganiere S; Fan X; Laganiere J; Brais B; Rouleau GA Traffic; 2005 Sep; 6(9):766-79. PubMed ID: 16101680 [TBL] [Abstract][Full Text] [Related]
17. A novel feed-forward loop between ARIH2 E3-ligase and PABPN1 regulates aging-associated muscle degeneration. Raz V; Buijze H; Raz Y; Verwey N; Anvar SY; Aartsma-Rus A; van der Maarel SM Am J Pathol; 2014 Apr; 184(4):1119-1131. PubMed ID: 24486325 [TBL] [Abstract][Full Text] [Related]
18. Nuclear poly(A) binding protein 1 (PABPN1) and Matrin3 interact in muscle cells and regulate RNA processing. Banerjee A; Vest KE; Pavlath GK; Corbett AH Nucleic Acids Res; 2017 Oct; 45(18):10706-10725. PubMed ID: 28977530 [TBL] [Abstract][Full Text] [Related]