BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 29088978)

  • 1. The biological challenges and pharmacological opportunities of orally administered nanomedicine delivery.
    Moss DM; Curley P; Kinvig H; Hoskins C; Owen A
    Expert Rev Gastroenterol Hepatol; 2018 Mar; 12(3):223-236. PubMed ID: 29088978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oral drug delivery with nanoparticles into the gastrointestinal mucosa.
    Liu J; Leng P; Liu Y
    Fundam Clin Pharmacol; 2021 Feb; 35(1):86-96. PubMed ID: 32749731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Models and methods to evaluate transport of drug delivery systems across cellular barriers.
    Ghaffarian R; Muro S
    J Vis Exp; 2013 Oct; (80):e50638. PubMed ID: 24192611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues.
    Lundquist P; Artursson P
    Adv Drug Deliv Rev; 2016 Nov; 106(Pt B):256-276. PubMed ID: 27496705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomedicines for intranasal delivery: understanding the nano-bio interactions at the nasal mucus-mucosal barrier.
    Hua T; Li S; Han B
    Expert Opin Drug Deliv; 2024 Apr; 21(4):553-572. PubMed ID: 38720439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delivery of Orally Administered Digestible Antibodies Using Nanoparticles.
    Tashima T
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33805888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability.
    Lamson NG; Berger A; Fein KC; Whitehead KA
    Nat Biomed Eng; 2020 Jan; 4(1):84-96. PubMed ID: 31686002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lessons from nature: "Pathogen-Mimetic" systems for mucosal nano-medicines.
    Mrsny RJ
    Adv Drug Deliv Rev; 2009 Feb; 61(2):172-92. PubMed ID: 19146895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular uptake and transcytosis of lipid-based nanoparticles across the intestinal barrier: Relevance for oral drug delivery.
    Neves AR; Queiroz JF; Costa Lima SA; Figueiredo F; Fernandes R; Reis S
    J Colloid Interface Sci; 2016 Feb; 463():258-65. PubMed ID: 26550783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles.
    Yuan H; Chen CY; Chai GH; Du YZ; Hu FQ
    Mol Pharm; 2013 May; 10(5):1865-73. PubMed ID: 23495754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and in vivo evaluation of papain-functionalized nanoparticles.
    Müller C; Perera G; König V; Bernkop-Schnürch A
    Eur J Pharm Biopharm; 2014 May; 87(1):125-31. PubMed ID: 24373995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse.
    Maisel K; Ensign L; Reddy M; Cone R; Hanes J
    J Control Release; 2015 Jan; 197():48-57. PubMed ID: 25449804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Oral Nano-Antibiotics for Bacterial Infection Therapy.
    Wu ZL; Zhao J; Xu R
    Int J Nanomedicine; 2020; 15():9587-9610. PubMed ID: 33293809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles.
    Li X; Guo S; Zhu C; Zhu Q; Gan Y; Rantanen J; Rahbek UL; Hovgaard L; Yang M
    Biomaterials; 2013 Dec; 34(37):9678-87. PubMed ID: 24016855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the Basement Membrane as an Intestinal Barrier to Absorption of Macromolecules and Nanoparticles.
    Mantaj J; Abu-Shams T; Enlo-Scott Z; Swedrowska M; Vllasaliu D
    Mol Pharm; 2018 Dec; 15(12):5802-5808. PubMed ID: 30380896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Addressing the challenges to increase the efficiency of translating nanomedicine formulations to patients.
    Bhattacharjee S; Brayden DJ
    Expert Opin Drug Discov; 2021 Mar; 16(3):235-254. PubMed ID: 33108229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract.
    Masaoka Y; Tanaka Y; Kataoka M; Sakuma S; Yamashita S
    Eur J Pharm Sci; 2006 Nov; 29(3-4):240-50. PubMed ID: 16876987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting disease-induced changes for targeted oral delivery of biologics and nanomedicines in inflammatory bowel disease.
    Zhang Y; Thanou M; Vllasaliu D
    Eur J Pharm Biopharm; 2020 Oct; 155():128-138. PubMed ID: 32853696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Avoiding a Sticky Situation: Bypassing the Mucus Barrier for Improved Local Drug Delivery.
    Zierden HC; Josyula A; Shapiro RL; Hsueh HT; Hanes J; Ensign LM
    Trends Mol Med; 2021 May; 27(5):436-450. PubMed ID: 33414070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers.
    Ensign LM; Cone R; Hanes J
    Adv Drug Deliv Rev; 2012 May; 64(6):557-70. PubMed ID: 22212900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.