These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29089237)

  • 21. Rounded cutting edge model for the prediction of bone sawing forces.
    James TP; Pearlman JJ; Saigal A
    J Biomech Eng; 2012 Jul; 134(7):. PubMed ID: 24763623
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental investigations and finite element simulation of cutting heat in vibrational and conventional drilling of cortical bone.
    Wang Y; Cao M; Zhao X; Zhu G; McClean C; Zhao Y; Fan Y
    Med Eng Phys; 2014 Nov; 36(11):1408-15. PubMed ID: 24908355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An analytical modeling with experimental validation of bone temperature rise in drilling process.
    Amewoui F; Le Coz G; Bonnet AS; Moufki A
    Med Eng Phys; 2020 Oct; 84():151-160. PubMed ID: 32977912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predictive force model for haptic feedback in bone sawing.
    James TP; Pearlman JJ; Saigal A
    Med Eng Phys; 2013 Nov; 35(11):1638-44. PubMed ID: 23806417
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Infrared thermography of high-speed grinding of bone in skull base neurosurgery.
    Shakouri E; Mirfallah P
    Proc Inst Mech Eng H; 2019 Jun; 233(6):648-656. PubMed ID: 31017535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Drilling Burr Minimization by Changing Drill Geometry.
    Franczyk E; Ślusarczyk Ł; Zębala W
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machining of bone: Analysis of cutting force and surface roughness by turning process.
    Noordin MY; Jiawkok N; Ndaruhadi PY; Kurniawan D
    Proc Inst Mech Eng H; 2015 Nov; 229(11):761-8. PubMed ID: 26399875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature elevations in orthopaedic cutting operations.
    Krause WR; Bradbury DW; Kelly JE; Lunceford EM
    J Biomech; 1982; 15(4):267-75. PubMed ID: 7096382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature rise during drilling through bone.
    Abouzgia MB; James DF
    Int J Oral Maxillofac Implants; 1997; 12(3):342-53. PubMed ID: 9197099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Force and torque modelling of drilling simulation for orthopaedic surgery.
    MacAvelia T; Ghasempoor A; Janabi-Sharifi F
    Comput Methods Biomech Biomed Engin; 2014; 17(12):1285-94. PubMed ID: 23167723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In-vitro experimental study of histopathology of bone in vibrational drilling.
    Alam K; Al-Ghaithi A; Piya S; Saleem A
    Med Eng Phys; 2019 May; 67():78-87. PubMed ID: 30981608
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analytical and experimental study of effective parameters on process temperature during cortical bone drilling.
    Heydari H; Cheraghi Kazerooni N; Zolfaghari M; Ghoreishi M; Tahmasbi V
    Proc Inst Mech Eng H; 2018 Sep; 232(9):871-883. PubMed ID: 30160611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental study of bone drilling by Kirschner wire.
    Song S; Cheng X; Li T; Shi M; Zheng G; Liu H
    Med Eng Phys; 2022 Aug; 106():103835. PubMed ID: 35926958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reducing temperature elevation of robotic bone drilling.
    Feldmann A; Wandel J; Zysset P
    Med Eng Phys; 2016 Dec; 38(12):1495-1504. PubMed ID: 27789226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental evaluation of cortical bone substitute materials for tool development, surgical training and drill bit wear investigations.
    Feldmann A; Schweizer M; Stucki S; Nolte L
    Med Eng Phys; 2019 Apr; 66():107-112. PubMed ID: 30850335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of applied force and blade speed on histopathology of bone during resection by sagittal saw.
    James TP; Chang G; Micucci S; Sagar A; Smith EL; Cassidy C
    Med Eng Phys; 2014 Mar; 36(3):364-70. PubMed ID: 24405736
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical and thermal damage in cortical bone drilling in vivo.
    Zhang Y; Xu L; Wang C; Chen Z; Han S; Chen B; Chen J
    Proc Inst Mech Eng H; 2019 Jun; 233(6):621-635. PubMed ID: 30922161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Drilling Parameters and Tool Geometry on the Thrust Force and Surface Roughness of Aerospace Grade Laminate Composites.
    Bolat Ç; Karakılınç U; Yalçın B; Öz Y; Yavaş Ç; Ergene B; Ercetin A; Akkoyun F
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical and experimental analyses of drills used in osteosynthesis.
    Basiaga M; Paszenda Z; Szewczenko J; Kaczmarek M
    Acta Bioeng Biomech; 2011; 13(4):29-36. PubMed ID: 22339223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Vitro and Ex Vivo Evaluation of a Novel Guided Drill System for Bone-Anchored Hearing Implants.
    Johansson ML; Eriksson T; Omar O
    Int J Oral Maxillofac Implants; 2019; 34(6):e85-e98. PubMed ID: 31711073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.