BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29089478)

  • 1. Direct observation of the nanoscale Kirkendall effect during galvanic replacement reactions.
    Chee SW; Tan SF; Baraissov Z; Bosman M; Mirsaidov U
    Nat Commun; 2017 Oct; 8(1):1224. PubMed ID: 29089478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Dynamics of Galvanic Replacement Reactions of Silver Nanocubes and Au Studied by Liquid-Cell Transmission Electron Microscopy.
    Tan SF; Lin G; Bosman M; Mirsaidov U; Nijhuis CA
    ACS Nano; 2016 Aug; 10(8):7689-95. PubMed ID: 27389989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of Ag nanocubes into Ag-Au hollow nanostructures with enriched Ag contents to improve SERS activity and chemical stability.
    Yang Y; Zhang Q; Fu ZW; Qin D
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3750-7. PubMed ID: 24476231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ liquid cell electron microscopy of Ag-Au galvanic replacement reactions.
    Sutter EA; Sutter PW
    Nanoscale; 2017 Jan; 9(3):1271-1278. PubMed ID: 28054692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enriching Silver Nanocrystals with a Second Noble Metal.
    Wu Y; Sun X; Yang Y; Li J; Zhang Y; Qin D
    Acc Chem Res; 2017 Jul; 50(7):1774-1784. PubMed ID: 28678472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles.
    Sutter E; Jungjohann K; Bliznakov S; Courty A; Maisonhaute E; Tenney S; Sutter P
    Nat Commun; 2014 Sep; 5():4946. PubMed ID: 25208691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Observation of Dynamic Galvanic Replacement Reactions in Twinned Metallic Nanowires by Liquid Cell Transmission Electron Microscopy.
    Zhuang C; Qi H; Cheng X; Chen G; Gao C; Wang L; Sun S; Zou J; Han X
    Angew Chem Int Ed Engl; 2019 Dec; 58(51):18627-18633. PubMed ID: 31621994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties.
    Xia X; Wang Y; Ruditskiy A; Xia Y
    Adv Mater; 2013 Nov; 25(44):6313-33. PubMed ID: 24027074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing Kinetics and Mechanism of Formation of Mixed Metallic Nanoparticles in a Polymer Membrane by Galvanic Replacement between Two Immiscible Metals: Case Study of Nickel/Silver Nanoparticle Synthesis.
    Gaidhani NG; Patra S; Chandwadkar HS; Sen D; Majumder C; Ramagiri SV; Bellare JR
    Langmuir; 2021 Feb; 37(5):1637-1650. PubMed ID: 33496595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Au-Ag hollow nanostructures with tunable SERS properties.
    Jiji SG; Gopchandran KG
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():499-506. PubMed ID: 27591701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring galvanic replacement reaction for the preparation of Pt/Ag bimetallic hollow nanostructures with controlled number of voids.
    Zhang W; Yang J; Lu X
    ACS Nano; 2012 Aug; 6(8):7397-405. PubMed ID: 22804563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct synthesis of Au-Ag nanoframes by galvanic replacement
    Cheng F; Gu W; Zhang H; Song C; Zhu Y; Ge F; Qu K; Xu H; Wu XJ; Wang L
    Nanoscale; 2022 Jun; 14(24):8825-8832. PubMed ID: 35686613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Imaging of the Formation of Au-Ag Core-Shell Nanoparticles.
    Tan SF; Chee SW; Lin G; Bosman M; Lin M; Mirsaidov U; Nijhuis CA
    J Am Chem Soc; 2016 Apr; 138(16):5190-3. PubMed ID: 27043921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-dependent nanoscale kirkendall effect during the oxidation of nickel nanoparticles.
    Railsback JG; Johnston-Peck AC; Wang J; Tracy JB
    ACS Nano; 2010 Apr; 4(4):1913-20. PubMed ID: 20361781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Galvanic Replacement-Driven Transformations of Atomically Intermixed Bimetallic Colloidal Nanocrystals: Effects of Compositional Stoichiometry and Structural Ordering.
    Li GG; Sun M; Villarreal E; Pandey S; Phillpot SR; Wang H
    Langmuir; 2018 Apr; 34(14):4340-4350. PubMed ID: 29566338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring galvanic replacement through three-dimensional morphological and chemical mapping.
    Goris B; Polavarapu L; Bals S; Van Tendeloo G; Liz-Marzán LM
    Nano Lett; 2014 Jun; 14(6):3220-6. PubMed ID: 24798989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity.
    Yang Y; Liu J; Fu ZW; Qin D
    J Am Chem Soc; 2014 Jun; 136(23):8153-6. PubMed ID: 24863686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile synthesis of Ag nanocubes and Au nanocages.
    Skrabalak SE; Au L; Li X; Xia Y
    Nat Protoc; 2007; 2(9):2182-90. PubMed ID: 17853874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel deposition mechanism of Au on Ag nanostructures involving galvanic replacement and reduction reactions.
    Xu J; Yun Q; Zhang H; Guo Y; Ke S; Wang J; Zhu X; Kan C
    Chem Commun (Camb); 2021 Aug; 57(67):8332-8335. PubMed ID: 34323254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Core-decomposition-facilitated fabrication of hollow rare-earth silicate nanowalnuts from core-shell structures via the Kirkendall effect.
    Zhou W; Zou R; Yang X; Huang N; Huang J; Liang H; Wang J
    Nanoscale; 2015 Aug; 7(32):13715-22. PubMed ID: 26220051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.