These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29089493)

  • 1. Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars.
    Gainey SR; Hausrath EM; Adcock CT; Tschauner O; Hurowitz JA; Ehlmann BL; Xiao Y; Bartlett CL
    Nat Commun; 2017 Nov; 8(1):1230. PubMed ID: 29089493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated martian surface ultraviolet radiation conditions.
    Poch O; Jaber M; Stalport F; Nowak S; Georgelin T; Lambert JF; Szopa C; Coll P
    Astrobiology; 2015 Mar; 15(3):221-37. PubMed ID: 25734356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars.
    Bristow TF; Rampe EB; Achilles CN; Blake DF; Chipera SJ; Craig P; Crisp JA; Des Marais DJ; Downs RT; Gellert R; Grotzinger JP; Gupta S; Hazen RM; Horgan B; Hogancamp JV; Mangold N; Mahaffy PR; McAdam AC; Ming DW; Morookian JM; Morris RV; Morrison SM; Treiman AH; Vaniman DT; Vasavada AR; Yen AS
    Sci Adv; 2018 Jun; 4(6):eaar3330. PubMed ID: 29881776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagenesis and clay mineral formation at Gale Crater, Mars.
    Bridges JC; Schwenzer SP; Leveille R; Westall F; Wiens RC; Mangold N; Bristow T; Edwards P; Berger G
    J Geophys Res Planets; 2015 Jan; 120(1):1-19. PubMed ID: 26213668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars.
    Bristow TF; Bish DL; Vaniman DT; Morris RV; Blake DF; Grotzinger JP; Rampe EB; Crisp JA; Achilles CN; Ming DW; Ehlmann BL; King PL; Bridges JC; Eigenbrode JL; Sumner DY; Chipera SJ; Moorokian JM; Treiman AH; Morrison SM; Downs RT; Farmer JD; Marais DD; Sarrazin P; Floyd MM; Mischna MA; McAdam AC
    Am Mineral; 2015 Apr; 100(4):824-836. PubMed ID: 28798492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weathering Profiles in Phosphorus-Rich Rocks at Gusev Crater, Mars, Suggest Dissolution of Phosphate Minerals into Potentially Habitable Near-Neutral Waters.
    Adcock CT; Hausrath EM
    Astrobiology; 2015 Dec; 15(12):1060-75. PubMed ID: 26684505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars.
    Bishop JL; Fairén AG; Michalski JR; Gago-Duport L; Baker LL; Velbel MA; Gross C; Rampe EB
    Nat Astron; 2018; 2():260-213. PubMed ID: 32042926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the Potential for Nitrate-Dependent Iron Oxidation on Early Mars: Implications for the Interpretation of Gale Crater Organics.
    Fifer LM; Wong ML
    Astrobiology; 2024 Jun; 24(6):590-603. PubMed ID: 38805190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative alteration of ferrous smectites and implications for the redox evolution of early Mars.
    Chemtob SM; Nickerson RD; Morris RV; Agresti DG; Catalano JG
    J Geophys Res Planets; 2017 Dec; 122(12):2469-2488. PubMed ID: 32802700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constraining the preservation of organic compounds in Mars analog nontronites after exposure to acid and alkaline fluids.
    Gil-Lozano C; Fairén AG; Muñoz-Iglesias V; Fernández-Sampedro M; Prieto-Ballesteros O; Gago-Duport L; Losa-Adams E; Carrizo D; Bishop JL; Fornaro T; Mateo-Martí E
    Sci Rep; 2020 Sep; 10(1):15097. PubMed ID: 32934272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic Records of Early Life on Mars: The Role of Iron, Burial, and Kinetics on Preservation.
    Tan J; Sephton MA
    Astrobiology; 2020 Jan; 20(1):53-72. PubMed ID: 31755737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox transformation of structural iron in nontronite induced by quinones under anoxic conditions.
    Zhang N; Tong M; Yuan S
    Sci Total Environ; 2021 Dec; 801():149637. PubMed ID: 34416610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium.
    Liu D; Dong H; Bishop ME; Zhang J; Wang H; Xie S; Wang S; Huang L; Eberl DD
    Geobiology; 2012 Mar; 10(2):150-62. PubMed ID: 22074236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars.
    Vaniman DT; Bish DL; Ming DW; Bristow TF; Morris RV; Blake DF; Chipera SJ; Morrison SM; Treiman AH; Rampe EB; Rice M; Achilles CN; Grotzinger JP; McLennan SM; Williams J; Bell JF; Newsom HE; Downs RT; Maurice S; Sarrazin P; Yen AS; Morookian JM; Farmer JD; Stack K; Milliken RE; Ehlmann BL; Sumner DY; Berger G; Crisp JA; Hurowitz JA; Anderson R; Des Marais DJ; Stolper EM; Edgett KS; Gupta S; Spanovich N;
    Science; 2014 Jan; 343(6169):1243480. PubMed ID: 24324271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diverse organic-mineral associations in Jezero crater, Mars.
    Sharma S; Roppel RD; Murphy AE; Beegle LW; Bhartia R; Steele A; Hollis JR; Siljeström S; McCubbin FM; Asher SA; Abbey WJ; Allwood AC; Berger EL; Bleefeld BL; Burton AS; Bykov SV; Cardarelli EL; Conrad PG; Corpolongo A; Czaja AD; DeFlores LP; Edgett K; Farley KA; Fornaro T; Fox AC; Fries MD; Harker D; Hickman-Lewis K; Huggett J; Imbeah S; Jakubek RS; Kah LC; Lee C; Liu Y; Magee A; Minitti M; Moore KR; Pascuzzo A; Rodriguez Sanchez-Vahamonde C; Scheller EL; Shkolyar S; Stack KM; Steadman K; Tuite M; Uckert K; Werynski A; Wiens RC; Williams AJ; Winchell K; Kennedy MR; Yanchilina A
    Nature; 2023 Jul; 619(7971):724-732. PubMed ID: 37438522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions Between Iron Sulfide Minerals and Organic Carbon: Implications for Biosignature Preservation and Detection.
    Picard A; Gartman A; Girguis PR
    Astrobiology; 2021 May; 21(5):587-604. PubMed ID: 33780638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long lasting habitable periods in Gale crater constrained by glauconitic clays.
    Losa-Adams E; Gil-Lozano C; Fairén AG; Bishop JL; Rampe EB; Gago-Duport L
    Nat Astron; 2021 Sep; 5(9):936-942. PubMed ID: 34541329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Microbial Community of a Terrestrial Anoxic Inter-Tidal Zone: A Model for Laboratory-Based Studies of Potentially Habitable Ancient Lacustrine Systems on Mars.
    Curtis-Harper E; Pearson VK; Summers S; Bridges JC; Schwenzer SP; Olsson-Francis K
    Microorganisms; 2018 Jun; 6(3):. PubMed ID: 29966361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction Pathway-Dependent Formation of Reactive Fe(II) Sites in Clay Minerals.
    Rothwell KA; Pentrak MP; Pentrak LA; Stucki JW; Neumann A
    Environ Sci Technol; 2023 Jul; 57(28):10231-10241. PubMed ID: 37418593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic Matter Preservation in Ancient Soils of Earth and Mars.
    Broz AP
    Life (Basel); 2020 Jul; 10(7):. PubMed ID: 32708606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.