BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 29089509)

  • 1. Comparison of the Optical Properties of Graphene and Alkyl-terminated Si and Ge Quantum Dots.
    de Weerd C; Shin Y; Marino E; Kim J; Lee H; Saeed S; Gregorkiewicz T
    Sci Rep; 2017 Oct; 7(1):14463. PubMed ID: 29089509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light management using CsPbBr
    Singh AK
    Methods Appl Fluoresc; 2020 Sep; 8(4):. PubMed ID: 32942272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. InGaAs quantum dots grown by molecular beam epitaxy for light emission on Si substrates.
    Bru-Chevallier C; El Akra A; Pelloux-Gervais D; Dumont H; Canut B; Chauvin N; Regreny P; Gendry M; Patriarche G; Jancu JM; Even J; Noe P; Calvo V; Salem B
    J Nanosci Nanotechnol; 2011 Oct; 11(10):9153-9. PubMed ID: 22400316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why do Si quantum dots with stronger fast emission have lower external photoluminescence quantum yield?
    Popelář T; Matějka F; Kopenec J; Morselli G; Ceroni P; Kůsová K
    Nanoscale Adv; 2024 May; 6(10):2644-2655. PubMed ID: 38752139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two Distinct Transitions in Cu(x)InS2 Quantum Dots. Bandgap versus Sub-Bandgap Excitations in Copper-Deficient Structures.
    Jara DH; Stamplecoskie KG; Kamat PV
    J Phys Chem Lett; 2016 Apr; 7(8):1452-9. PubMed ID: 27043435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure/Property Relations in "Giant" Semiconductor Nanocrystals: Opportunities in Photonics and Electronics.
    Navarro-Pardo F; Zhao H; Wang ZM; Rosei F
    Acc Chem Res; 2018 Mar; 51(3):609-618. PubMed ID: 29260851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-infrared photoluminescence enhancement in Ge/CdS and Ge/ZnS Core/shell nanocrystals: utilizing IV/II-VI semiconductor epitaxy.
    Guo Y; Rowland CE; Schaller RD; Vela J
    ACS Nano; 2014 Aug; 8(8):8334-43. PubMed ID: 25010416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of three-dimensional quantum dot lattice of Ge/Si core-shell quantum dots and Si/Ge layers in an alumina glass matrix.
    Buljan M; Radić N; Sancho-Paramon J; Janicki V; Grenzer J; Bogdanović-Radović I; Siketić Z; Ivanda M; Utrobičić A; Hübner R; Weidauer R; Valeš V; Endres J; Car T; Jerčinović M; Roško J; Bernstorff S; Holy V
    Nanotechnology; 2015 Feb; 26(6):065602. PubMed ID: 25605224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology.
    Zhang F; Zhong H; Chen C; Wu XG; Hu X; Huang H; Han J; Zou B; Dong Y
    ACS Nano; 2015 Apr; 9(4):4533-42. PubMed ID: 25824283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic and Magneto-Optical Signatures of Cu
    Fuhr A; Yun HJ; Crooker SA; Klimov VI
    ACS Nano; 2020 Feb; 14(2):2212-2223. PubMed ID: 31927981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene/III-V Quantum Dot Mixed-Dimensional Heterostructure for Enhanced Radiative Recombinations via Hole Carrier Transfer.
    Lung QND; Chu RJ; Kim Y; Laryn T; Madarang MA; Kovalchuk O; Song YW; Lee IH; Choi C; Choi WJ; Jung D
    Nano Lett; 2023 Apr; 23(8):3344-3351. PubMed ID: 37027572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brightly luminescent and color-tunable green-violet-emitting halide perovskite CH
    Liu Y; Xu Q; Chang S; Lv Z; Huang S; Jiang F; Zhang X; Yang G; Tong X; Hao S; Ren Y
    Phys Chem Chem Phys; 2018 Aug; 20(30):19950-19957. PubMed ID: 30022197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confinement Effects and Charge Dynamics in Zn
    Ahumada-Lazo R; Fairclough SM; Hardman SJO; Taylor PN; Green M; Haigh SJ; Saran R; Curry RJ; Binks DJ
    ACS Appl Nano Mater; 2019 Nov; 2(11):7214-7219. PubMed ID: 32118200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layer-by-layer assembly of multicolored semiconductor quantum dots towards efficient blue, green, red and full color optical films.
    Zhang J; Li Q; Di X; Liu Z; Xu G
    Nanotechnology; 2008 Oct; 19(43):435606. PubMed ID: 21832701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled Colloidal Quantum Dot Molecules.
    Koley S; Cui J; Panfil YE; Banin U
    Acc Chem Res; 2021 Mar; 54(5):1178-1188. PubMed ID: 33459013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of germanium-silicon quantum dots formation on Si(100), Si(111) and Sn/Si(100) surfaces.
    Lozovoy K; Kokhanenko A; Voitsekhovskii A
    Nanotechnology; 2018 Feb; 29(5):054002. PubMed ID: 29303114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging Atomic Energy Levels in Zero-Dimensional Silicon Quantum Dots.
    Shirahata N; Nakamura J; Inoue JI; Ghosh B; Nemoto K; Nemoto Y; Takeguchi M; Masuda Y; Tanaka M; Ozin GA
    Nano Lett; 2020 Mar; 20(3):1491-1498. PubMed ID: 32046494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blinking suppression in CdSe/ZnS single quantum dots by TiO2 nanoparticles.
    Hamada M; Nakanishi S; Itoh T; Ishikawa M; Biju V
    ACS Nano; 2010 Aug; 4(8):4445-54. PubMed ID: 20731430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.