These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 29089557)

  • 1. High-throughput assessment of mechanical properties of stem cell derived red blood cells, toward cellular downstream processing.
    Guzniczak E; Mohammad Zadeh M; Dempsey F; Jimenez M; Bock H; Whyte G; Willoughby N; Bridle H
    Sci Rep; 2017 Oct; 7(1):14457. PubMed ID: 29089557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purifying stem cell-derived red blood cells: a high-throughput label-free downstream processing strategy based on microfluidic spiral inertial separation and membrane filtration.
    Guzniczak E; Otto O; Whyte G; Chandra T; Robertson NA; Willoughby N; Jimenez M; Bridle H
    Biotechnol Bioeng; 2020 Jul; 117(7):2032-2045. PubMed ID: 32100873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical characterization of living and dead undifferentiated human adipose-derived stem cells by using atomic force microscopy.
    Hu K; Zhao F; Wang Q
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1319-23. PubMed ID: 24044923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alteration of Young's modulus in mesenchymal stromal cells during osteogenesis measured by atomic force microscopy.
    Yen MH; Chen YH; Liu YS; Lee OK
    Biochem Biophys Res Commun; 2020 Jun; 526(3):827-832. PubMed ID: 32273088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterising the mechanical properties of haematopoietic and mesenchymal stem cells using micromanipulation and atomic force microscopy.
    Du M; Kavanagh D; Kalia N; Zhang Z
    Med Eng Phys; 2019 Nov; 73():18-29. PubMed ID: 31405755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput single-cell mechanical phenotyping with real-time deformability cytometry.
    Urbanska M; Rosendahl P; Kräter M; Guck J
    Methods Cell Biol; 2018; 147():175-198. PubMed ID: 30165957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of the erythrocyte deformability using atomic force microscopy: correlation study of the erythrocyte deformability with atomic force microscopy and hemorheology.
    Chen X; Feng L; Jin H; Feng S; Yu Y
    Clin Hemorheol Microcirc; 2009; 43(3):243-51. PubMed ID: 19847058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring Elastic Properties of Single Cancer Cells by AFM.
    Lekka M; Pabijan J
    Methods Mol Biol; 2019; 1886():315-324. PubMed ID: 30374876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alteration Young's moduli by protein 4.1 phosphorylation play a potential role in the deformability development of vertebrate erythrocytes.
    Tang F; Lei X; Xiong Y; Wang R; Mao J; Wang X
    J Biomech; 2014 Oct; 47(13):3400-7. PubMed ID: 25242130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic force microscopy imaging and mechanical properties measurement of red blood cells and aggressive cancer cells.
    Li M; Liu L; Xi N; Wang Y; Dong Z; Xiao X; Zhang W
    Sci China Life Sci; 2012 Nov; 55(11):968-73. PubMed ID: 23160828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of stem cell-to-tenocyte differentiation by atomic force microscopy to measure cellular elastic moduli.
    Morita Y; Mukai T; Ju Y; Watanabe S
    Cell Biochem Biophys; 2013 May; 66(1):73-80. PubMed ID: 23090789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Systematic Study of Size Correlation and Young's Modulus Sensitivity for Cellular Mechanical Phenotyping by Microfluidic Approaches.
    Liang M; Zhong J; Ai Y
    Adv Healthc Mater; 2022 Oct; 11(19):e2200628. PubMed ID: 35852381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic hysteresis loop acts as cell deformability in erythrocyte aging.
    Tang F; Chen D; Zhang S; Hu W; Chen J; Zhou H; Zeng Z; Wang X
    Biochim Biophys Acta Biomembr; 2020 Jul; 1862(7):183309. PubMed ID: 32298678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatio-temporal development of the endothelial glycocalyx layer and its mechanical property in vitro.
    Bai K; Wang W
    J R Soc Interface; 2012 Sep; 9(74):2290-8. PubMed ID: 22417911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of β1-integrin expression on chondrogenically differentiating human adipose-derived stem cells using atomic force microscopy.
    Quisenberry CR; Nazempour A; Van Wie BJ; Abu-Lail NI
    Biointerphases; 2016 Jun; 11(2):021005. PubMed ID: 27106564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cancer cell recognition--mechanical phenotype.
    Lekka M; Pogoda K; Gostek J; Klymenko O; Prauzner-Bechcicki S; Wiltowska-Zuber J; Jaczewska J; Lekki J; Stachura Z
    Micron; 2012 Dec; 43(12):1259-66. PubMed ID: 22436422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the elastic properties of tomato fruit cells with an atomic force microscope.
    Zdunek A; Kurenda A
    Sensors (Basel); 2013 Sep; 13(9):12175-91. PubMed ID: 24030683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformation and nano-rheology of red blood cells: an AFM investigation.
    Bremmell KE; Evans A; Prestidge CA
    Colloids Surf B Biointerfaces; 2006 Jun; 50(1):43-8. PubMed ID: 16701986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic label-free bioprocessing of human reticulocytes from erythroid culture.
    Zeming KK; Sato Y; Yin L; Huang NJ; Wong LH; Loo HL; Lim YB; Lim CT; Chen J; Preiser PR; Han J
    Lab Chip; 2020 Sep; 20(18):3445-3460. PubMed ID: 32793940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applicability of atomic force microscopy to determine cancer-related changes in cells.
    Lekka M
    Philos Trans A Math Phys Eng Sci; 2022 Sep; 380(2232):20210346. PubMed ID: 35909354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.