These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 29089620)
1. Investigation of thermal energy transport interface of hybrid graphene-carbon nanotube/polyethylene nanocomposites. Liu F; Liu X; Hu N; Ning H; Atobe S; Yan C; Mo F; Fu S; Zhang J; Wang Y; Mu X Sci Rep; 2017 Oct; 7(1):14700. PubMed ID: 29089620 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of thermal energy transport across the graphene/h-BN heterostructure interface. Liu F; Zou R; Hu N; Ning H; Yan C; Liu Y; Wu L; Mo F; Fu S Nanoscale; 2019 Mar; 11(9):4067-4072. PubMed ID: 30778431 [TBL] [Abstract][Full Text] [Related]
3. Effect of Carbon Nanotube Addition on the Interfacial Adhesion between Graphene and Epoxy: A Molecular Dynamics Simulation. Sun S; Chen S; Weng X; Shan F; Hu S Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960105 [TBL] [Abstract][Full Text] [Related]
4. Carbon Nanotube-Graphene Hybrid Electrodes with Enhanced Thermo-Electrochemical Cell Properties. Zhou Y; Qian W; Huang W; Liu B; Lin H; Dong C Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31614756 [TBL] [Abstract][Full Text] [Related]
5. Nano-engineering thermal transport performance of carbon nanotube networks with polymer intercalation: a molecular dynamics study. Zhang J; Jiang C; Jiang D; Peng HX Phys Chem Chem Phys; 2014 Mar; 16(9):4378-85. PubMed ID: 24457262 [TBL] [Abstract][Full Text] [Related]
7. Role of the Carbon Nanotube Junction in the Mechanical Performance of Carbon Nanotube/Polyethylene Nanocomposites: A Molecular Dynamics Study. Shi X; He X; Liu X Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535668 [TBL] [Abstract][Full Text] [Related]
8. Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube? Zhang Y; Tang ZR; Fu X; Xu YJ ACS Nano; 2011 Sep; 5(9):7426-35. PubMed ID: 21870826 [TBL] [Abstract][Full Text] [Related]
9. Electrically conductive epoxy nanocomposites with expanded graphite/carbon nanotube hybrid fillers prepared by direct hybridization. Yu L; Kang H; Lim YS; Lee CS; Shin K; Park JS; Han JH J Nanosci Nanotechnol; 2014 Dec; 14(12):9139-42. PubMed ID: 25971025 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of fullerene-, carbon nanotube-, and graphene-TiO₂ nanocomposite photocatalysts for selective oxidation: a comparative study. Yang MQ; Zhang N; Xu YJ ACS Appl Mater Interfaces; 2013 Feb; 5(3):1156-64. PubMed ID: 23324025 [TBL] [Abstract][Full Text] [Related]
11. Thermal Conductivity of Polyamide-6,6/Carbon Nanotube Composites: Effects of Tube Diameter and Polymer Linkage between Tubes. Keshtkar M; Mehdipour N; Eslami H Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31500250 [TBL] [Abstract][Full Text] [Related]
12. Ultrasonic-Assisted Method for the Preparation of Carbon Nanotube-Graphene/Polydimethylsiloxane Composites with Integrated Thermal Conductivity, Electromagnetic Interference Shielding, and Mechanical Performances. Li C; Yang Z; Zhang X; Ru Y; Gao D; Wu D; Sun J Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499333 [TBL] [Abstract][Full Text] [Related]
13. Some Aspects of Thermal Transport across the Interface between Graphene and Epoxy in Nanocomposites. Wang Y; Yang C; Pei QX; Zhang Y ACS Appl Mater Interfaces; 2016 Mar; 8(12):8272-9. PubMed ID: 26959807 [TBL] [Abstract][Full Text] [Related]
14. Thermal conductance bottleneck of a three dimensional graphene-CNT hybrid structure: a molecular dynamics simulation. Yu Z; Feng Y; Feng D; Zhang X Phys Chem Chem Phys; 2019 Dec; 22(1):337-343. PubMed ID: 31815266 [TBL] [Abstract][Full Text] [Related]
15. Influence of polyethylene cross-linked functionalization on the interfacial properties of carbon nanotube-reinforced polymer nanocomposites: a molecular dynamics study. Haghighi S; Ansari R; Ajori S J Mol Model; 2019 Mar; 25(4):105. PubMed ID: 30927080 [TBL] [Abstract][Full Text] [Related]
16. Carbon nanotube epoxy nanocomposites: the effects of interfacial modifications on the dynamic mechanical properties of the nanocomposites. Yoonessi M; Lebrón-Colón M; Scheiman D; Meador MA ACS Appl Mater Interfaces; 2014 Oct; 6(19):16621-30. PubMed ID: 25215892 [TBL] [Abstract][Full Text] [Related]
17. Interfacial load transfer in polymer/carbon nanotube nanocomposites with a nanohybrid shish kebab modification. Nie M; Kalyon DM; Fisher FT ACS Appl Mater Interfaces; 2014 Sep; 6(17):14886-93. PubMed ID: 25134606 [TBL] [Abstract][Full Text] [Related]
18. Nanoscale Structure-Property Relationships of Polyacrylonitrile/CNT Composites as a Function of Polymer Crystallinity and CNT Diameter. Gissinger JR; Pramanik C; Newcomb B; Kumar S; Heinz H ACS Appl Mater Interfaces; 2018 Jan; 10(1):1017-1027. PubMed ID: 29231715 [TBL] [Abstract][Full Text] [Related]
19. Interfacial thermal transport and structural preferences in carbon nanotube-polyamide-6,6 nanocomposites: how important are chemical functionalization effects? Gharib-Zahedi MR; Tafazzoli M; Böhm MC; Alaghemandi M Phys Chem Chem Phys; 2015 Jun; 17(22):14502-12. PubMed ID: 25942680 [TBL] [Abstract][Full Text] [Related]
20. Effects of vacancy defects on the interfacial shear strength of carbon nanotube reinforced polymer composite. Chowdhury SC; Okabe T; Nishikawa M J Nanosci Nanotechnol; 2010 Feb; 10(2):739-45. PubMed ID: 20352712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]