These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 29089641)

  • 1. Roles of dopamine neurons in mediating the prediction error in aversive learning in insects.
    Terao K; Mizunami M
    Sci Rep; 2017 Oct; 7(1):14694. PubMed ID: 29089641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of Octopamine and Dopamine Neurons for Mediating Appetitive and Aversive Signals in Pavlovian Conditioning in Crickets.
    Mizunami M; Matsumoto Y
    Front Physiol; 2017; 8():1027. PubMed ID: 29311961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies.
    Awata H; Wakuda R; Ishimaru Y; Matsuoka Y; Terao K; Katata S; Matsumoto Y; Hamanaka Y; Noji S; Mito T; Mizunami M
    Sci Rep; 2016 Jul; 6():29696. PubMed ID: 27412401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of a Prediction Error Theory to Pavlovian Conditioning in an Insect.
    Mizunami M; Terao K; Alvarez B
    Front Psychol; 2018; 9():1272. PubMed ID: 30083125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets.
    Awata H; Watanabe T; Hamanaka Y; Mito T; Noji S; Mizunami M
    Sci Rep; 2015 Nov; 5():15885. PubMed ID: 26521965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical evidence for the prediction error theory in associative learning.
    Terao K; Matsumoto Y; Mizunami M
    Sci Rep; 2015 Mar; 5():8929. PubMed ID: 25754125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in an insect.
    Mizunami M; Unoki S; Mori Y; Hirashima D; Hatano A; Matsumoto Y
    BMC Biol; 2009 Aug; 7():46. PubMed ID: 19653886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis and modeling of neural processes underlying sensory preconditioning.
    Matsumoto Y; Hirashima D; Mizunami M
    Neurobiol Learn Mem; 2013 Mar; 101():103-13. PubMed ID: 23380289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of octopaminergic and dopaminergic neurons in mediating reward and punishment signals in insect visual learning.
    Unoki S; Matsumoto Y; Mizunami M
    Eur J Neurosci; 2006 Oct; 24(7):2031-8. PubMed ID: 17067299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concerted Actions of Octopamine and Dopamine Receptors Drive Olfactory Learning.
    Sabandal JM; Sabandal PR; Kim YC; Han KA
    J Neurosci; 2020 May; 40(21):4240-4250. PubMed ID: 32277043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of octopamine and dopamine in appetitive and aversive memory acquisition studied in olfactory conditioning of maxillary palpi extension response in crickets.
    Matsumoto Y; Matsumoto CS; Wakuda R; Ichihara S; Mizunami M
    Front Behav Neurosci; 2015; 9():230. PubMed ID: 26388749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Participation of octopaminergic reward system and dopaminergic punishment system in insect olfactory learning revealed by pharmacological study.
    Unoki S; Matsumoto Y; Mizunami M
    Eur J Neurosci; 2005 Sep; 22(6):1409-16. PubMed ID: 16190895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of octopamine neurons in the vertical lobe of the mushroom body for the execution of a conditioned response in cockroaches.
    Matsumoto CS; Matsumoto Y; Mizunami M
    Neurobiol Learn Mem; 2023 Sep; 203():107778. PubMed ID: 37257558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different circuit and monoamine mechanisms consolidate long-term memory in aversive and reward classical conditioning.
    Kemenes I; O'Shea M; Benjamin PR
    Eur J Neurosci; 2011 Jan; 33(1):143-52. PubMed ID: 21070389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous recovery from overexpectation in an insect.
    Terao K; Matsumoto Y; Álvarez B; Mizunami M
    Sci Rep; 2022 Jun; 12(1):9827. PubMed ID: 35701655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cue-Evoked Dopamine Promotes Conditioned Responding during Learning.
    Morrens J; Aydin Ç; Janse van Rensburg A; Esquivelzeta Rabell J; Haesler S
    Neuron; 2020 Apr; 106(1):142-153.e7. PubMed ID: 32027824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Putative γ-aminobutyric acid neurons in the ventral tegmental area have a similar pattern of plasticity as dopamine neurons during appetitive and aversive learning.
    Kim YB; Matthews M; Moghaddam B
    Eur J Neurosci; 2010 Nov; 32(9):1564-72. PubMed ID: 21040517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of aminergic neurons in formation and recall of associative memory in crickets.
    Mizunami M; Matsumoto Y
    Front Behav Neurosci; 2010; 4():172. PubMed ID: 21119781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layered reward signalling through octopamine and dopamine in Drosophila.
    Burke CJ; Huetteroth W; Owald D; Perisse E; Krashes MJ; Das G; Gohl D; Silies M; Certel S; Waddell S
    Nature; 2012 Dec; 492(7429):433-7. PubMed ID: 23103875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine responses comply with basic assumptions of formal learning theory.
    Waelti P; Dickinson A; Schultz W
    Nature; 2001 Jul; 412(6842):43-8. PubMed ID: 11452299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.