BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 29090341)

  • 1. Enhanced long-chain fatty alcohol oxidation by immobilization of alcohol dehydrogenase from S. cerevisiae.
    Ottone C; Bernal C; Serna N; Illanes A; Wilson L
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):237-247. PubMed ID: 29090341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Macromolecular Crowding on Alcohol Dehydrogenase Activity Are Substrate-Dependent.
    Wilcox AE; LoConte MA; Slade KM
    Biochemistry; 2016 Jun; 55(25):3550-8. PubMed ID: 27283046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liposomal encapsulation of yeast alcohol dehydrogenase with cofactor for stabilization of the enzyme structure and activity.
    Yoshimoto M; Sato M; Yoshimoto N; Nakao K
    Biotechnol Prog; 2008; 24(3):576-82. PubMed ID: 18335956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of pH studies to determine the kinetic and chemical mechanism of yeast alcohol dehydrogenase with primary aliphatic alcohols and aldehydes.
    Leskovac V; Trivic S; Anderson BM
    Indian J Biochem Biophys; 1996 Jun; 33(3):177-83. PubMed ID: 8828287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The three zinc-containing alcohol dehydrogenases from baker's yeast, Saccharomyces cerevisiae.
    Leskovac V; Trivić S; Pericin D
    FEMS Yeast Res; 2002 Dec; 2(4):481-94. PubMed ID: 12702265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks.
    d'Espaux L; Ghosh A; Runguphan W; Wehrs M; Xu F; Konzock O; Dev I; Nhan M; Gin J; Reider Apel A; Petzold CJ; Singh S; Simmons BA; Mukhopadhyay A; García Martín H; Keasling JD
    Metab Eng; 2017 Jul; 42():115-125. PubMed ID: 28606738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering yeast alcohol dehydrogenase. Replacing Trp54 by Leu broadens substrate specificity.
    Weinhold EG; Benner SA
    Protein Eng; 1995 May; 8(5):457-61. PubMed ID: 8532667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of the stability of alcohol dehydrogenase by covalent immobilization on glyoxyl-agarose.
    Bolivar JM; Wilson L; Ferrarotti SA; Guisán JM; Fernández-Lafuente R; Mateo C
    J Biotechnol; 2006 Aug; 125(1):85-94. PubMed ID: 16530871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathway Compartmentalization in Peroxisome of Saccharomyces cerevisiae to Produce Versatile Medium Chain Fatty Alcohols.
    Sheng J; Stevens J; Feng X
    Sci Rep; 2016 May; 6():26884. PubMed ID: 27230732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishing very long-chain fatty alcohol and wax ester biosynthesis in Saccharomyces cerevisiae.
    Wenning L; Yu T; David F; Nielsen J; Siewers V
    Biotechnol Bioeng; 2017 May; 114(5):1025-1035. PubMed ID: 27858995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The activity of yeast ADH I and ADH II with long-chain alcohols and diols.
    Dickinson FM; Dack S
    Chem Biol Interact; 2001 Jan; 130-132(1-3):417-23. PubMed ID: 11306063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coenzyme regeneration in hexanol oxidation catalyzed by alcohol dehydrogenase.
    Vrsalović Presečki A; Makovšek K; Vasić-Rački Đ
    Appl Biochem Biotechnol; 2012 Jun; 167(3):595-611. PubMed ID: 22581078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose.
    Guo W; Sheng J; Zhao H; Feng X
    Microb Cell Fact; 2016 Feb; 15():24. PubMed ID: 26830023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethanol generation, oxidation and energy production in a cooperative bioelectrochemical system.
    Pagnoncelli KC; Pereira AR; Sedenho GC; Bertaglia T; Crespilho FN
    Bioelectrochemistry; 2018 Aug; 122():11-25. PubMed ID: 29510261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel enzymatic assay for determination of alkyl polyglycosides with short chain fatty alcohols.
    Bastl-Borrmann R; Kroth LW
    Fresenius J Anal Chem; 2001 Dec; 371(7):939-43. PubMed ID: 11769804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of dehydrogenase onto epoxy-functionalized nanoparticles for synthesis of (R)-mandelic acid.
    Jiang XP; Lu TT; Liu CH; Ling XM; Zhuang MY; Zhang JX; Zhang YW
    Int J Biol Macromol; 2016 Jul; 88():9-17. PubMed ID: 26995611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and further stabilization of a new anti-prelog specific alcohol dehydrogenase from Thermus thermophilus HB27 for asymmetric reduction of carbonyl compounds.
    Rocha-Martín J; Vega D; Bolivar JM; Hidalgo A; Berenguer J; Guisán JM; López-Gallego F
    Bioresour Technol; 2012 Jan; 103(1):343-50. PubMed ID: 22055107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of alcohol dehydrogenase from Saccharomyces cerevisiae onto carboxymethyl dextran-coated magnetic nanoparticles: a novel route for biocatalyst improvement via epoxy activation.
    Vasić K; Knez Ž; Leitgeb M
    Sci Rep; 2020 Nov; 10(1):19478. PubMed ID: 33173138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability engineering of the Geobacillus stearothermophilus alcohol dehydrogenase and application for the synthesis of a polyamide 12 precursor.
    Kirmair L; Seiler DL; Skerra A
    Appl Microbiol Biotechnol; 2015 Dec; 99(24):10501-13. PubMed ID: 26329849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Saccharomyces cerevisiae to produce odd chain-length fatty alcohols.
    Jin Z; Wong A; Foo JL; Ng J; Cao YX; Chang MW; Yuan YJ
    Biotechnol Bioeng; 2016 Apr; 113(4):842-51. PubMed ID: 26461930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.