These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 29090570)
1. Geometrical Alignment of Multiple Fabrication Steps for Rapid Prototyping of Microfluidic Paper-Based Analytical Devices. Rahbar M; Nesterenko PN; Paull B; Macka M Anal Chem; 2017 Nov; 89(22):11918-11923. PubMed ID: 29090570 [TBL] [Abstract][Full Text] [Related]
2. High-throughput deposition of chemical reagents via pen-plotting technique for microfluidic paper-based analytical devices. Rahbar M; Nesterenko PN; Paull B; Macka M Anal Chim Acta; 2019 Jan; 1047():115-123. PubMed ID: 30567641 [TBL] [Abstract][Full Text] [Related]
3. Fast and flexible strategy to produce electrochemical paper-based analytical devices using a craft cutter printer to create wax barrier and screen-printed electrodes. de Oliveira TR; Fonseca WT; de Oliveira Setti G; Faria RC Talanta; 2019 Apr; 195():480-489. PubMed ID: 30625573 [TBL] [Abstract][Full Text] [Related]
4. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays. Chiang CK; Kurniawan A; Kao CY; Wang MJ Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613 [TBL] [Abstract][Full Text] [Related]
5. A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (μPADs) using technical drawing pens and in-house formulated aqueous inks. Nuchtavorn N; Macka M Anal Chim Acta; 2016 May; 919():70-77. PubMed ID: 27086101 [TBL] [Abstract][Full Text] [Related]
6. Characteristics of Microfluidic Paper-based Analytical Devices Fabricated by Four Different Methods. Komatsu T; Maeki M; Ishida A; Tani H; Tokeshi M Anal Sci; 2018; 34(1):39-44. PubMed ID: 29321455 [TBL] [Abstract][Full Text] [Related]
7. Single-step batch fabrication of microfluidic paper-based analytical devices with a 3D printer and their applications in nanoenzyme-enhanced visual detection of dopamine. Yan Y; Huang X; Yuan L; Tang Y; Zhu W; Du H; Nie J; Zhang L; Liao S; Tang X; Zhang Y Anal Bioanal Chem; 2024 Jul; 416(18):4131-4141. PubMed ID: 38780654 [TBL] [Abstract][Full Text] [Related]
8. A simple method to produce 2D and 3D microfluidic paper-based analytical devices for clinical analysis. de Oliveira RAG; Camargo F; Pesquero NC; Faria RC Anal Chim Acta; 2017 Mar; 957():40-46. PubMed ID: 28107832 [TBL] [Abstract][Full Text] [Related]
9. Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose monitoring. de Castro LF; de Freitas SV; Duarte LC; de Souza JAC; Paixão TRLC; Coltro WKT Anal Bioanal Chem; 2019 Jul; 411(19):4919-4928. PubMed ID: 30941478 [TBL] [Abstract][Full Text] [Related]
10. Fully inkjet-printed distance-based paper microfluidic devices for colorimetric calcium determination using ion-selective optodes. Shibata H; Hiruta Y; Citterio D Analyst; 2019 Feb; 144(4):1178-1186. PubMed ID: 30560965 [TBL] [Abstract][Full Text] [Related]
11. Paper-based inkjet-printed microfluidic analytical devices. Yamada K; Henares TG; Suzuki K; Citterio D Angew Chem Int Ed Engl; 2015 Apr; 54(18):5294-310. PubMed ID: 25864471 [TBL] [Abstract][Full Text] [Related]
12. Double-sided 3D printing on paper towards mass production of three-dimensional paper-based microfluidic analytical devices (3D-μPADs). Park C; Han YD; Kim HV; Lee J; Yoon HC; Park S Lab Chip; 2018 May; 18(11):1533-1538. PubMed ID: 29748672 [TBL] [Abstract][Full Text] [Related]
13. Versatile fabrication of paper-based microfluidic devices with high chemical resistance using scholar glue and magnetic masks. Cardoso TMG; de Souza FR; Garcia PT; Rabelo D; Henry CS; Coltro WKT Anal Chim Acta; 2017 Jun; 974():63-68. PubMed ID: 28535882 [TBL] [Abstract][Full Text] [Related]
14. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices. Liu M; Zhang C; Liu F Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382 [TBL] [Abstract][Full Text] [Related]
15. 3D printed hydrophobic barriers in a paper-based biosensor for point-of-care detection of dengue virus serotypes. Suvanasuthi R; Chimnaronk S; Promptmas C Talanta; 2022 Jan; 237():122962. PubMed ID: 34736687 [TBL] [Abstract][Full Text] [Related]
17. Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method. Thompson BL; Ouyang Y; Duarte GR; Carrilho E; Krauss ST; Landers JP Nat Protoc; 2015 Jun; 10(6):875-86. PubMed ID: 25974096 [TBL] [Abstract][Full Text] [Related]
18. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Dungchai W; Chailapakul O; Henry CS Analyst; 2011 Jan; 136(1):77-82. PubMed ID: 20871884 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of paper microfluidic devices using a toner laser printer. Ng JS; Hashimoto M RSC Adv; 2020 Aug; 10(50):29797-29807. PubMed ID: 35518222 [TBL] [Abstract][Full Text] [Related]
20. Pen-on-paper strategy for point-of-care testing: Rapid prototyping of fully written microfluidic biosensor. Li Z; Li F; Xing Y; Liu Z; You M; Li Y; Wen T; Qu Z; Ling Li X; Xu F Biosens Bioelectron; 2017 Dec; 98():478-485. PubMed ID: 28728008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]