BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 29090617)

  • 1. Preparation and biological activities of anti-HER2 monoclonal antibodies with fully core-fucosylated homogeneous bi-antennary complex-type glycans.
    Tsukimura W; Kurogochi M; Mori M; Osumi K; Matsuda A; Takegawa K; Furukawa K; Shirai T
    Biosci Biotechnol Biochem; 2017 Dec; 81(12):2353-2359. PubMed ID: 29090617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of terminal galactose residues in mannose α1-6 arm of Fc-glycan on the effector functions of therapeutic monoclonal antibodies.
    Aoyama M; Hashii N; Tsukimura W; Osumi K; Harazono A; Tada M; Kiyoshi M; Matsuda A; Ishii-Watabe A
    MAbs; 2019 Jul; 11(5):826-836. PubMed ID: 30990348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities.
    Kurogochi M; Mori M; Osumi K; Tojino M; Sugawara S; Takashima S; Hirose Y; Tsukimura W; Mizuno M; Amano J; Matsuda A; Tomita M; Takayanagi A; Shoda S; Shirai T
    PLoS One; 2015; 10(7):e0132848. PubMed ID: 26200113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of the Side Chain at Position 296 of Antibody Fc in Interactions with FcγRIIIa and Other Fcγ Receptors.
    Isoda Y; Yagi H; Satoh T; Shibata-Koyama M; Masuda K; Satoh M; Kato K; Iida S
    PLoS One; 2015; 10(10):e0140120. PubMed ID: 26444434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nonfucosylated anti-HER2 antibody augments antibody-dependent cellular cytotoxicity in breast cancer patients.
    Suzuki E; Niwa R; Saji S; Muta M; Hirose M; Iida S; Shiotsu Y; Satoh M; Shitara K; Kondo M; Toi M
    Clin Cancer Res; 2007 Mar; 13(6):1875-82. PubMed ID: 17363544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a pre-glycoengineered CHO-K1 host cell line for the expression of antibodies with enhanced Fc mediated effector function.
    Popp O; Moser S; Zielonka J; Rüger P; Hansen S; Plöttner O
    MAbs; 2018; 10(2):290-303. PubMed ID: 29173063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose.
    Ferrara C; Grau S; Jäger C; Sondermann P; Brünker P; Waldhauer I; Hennig M; Ruf A; Rufer AC; Stihle M; Umaña P; Benz J
    Proc Natl Acad Sci U S A; 2011 Aug; 108(31):12669-74. PubMed ID: 21768335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interplay of protein engineering and glycoengineering to fine-tune antibody glycosylation and its impact on effector functions.
    Wang Q; Wang T; Zhang R; Yang S; McFarland KS; Chung CY; Jia H; Wang LX; Cipollo JF; Betenbaugh MJ
    Biotechnol Bioeng; 2022 Jan; 119(1):102-117. PubMed ID: 34647616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FcgammaRIIIa.
    Iida S; Misaka H; Inoue M; Shibata M; Nakano R; Yamane-Ohnuki N; Wakitani M; Yano K; Shitara K; Satoh M
    Clin Cancer Res; 2006 May; 12(9):2879-87. PubMed ID: 16675584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FX knockout CHO hosts can express desired ratios of fucosylated or afucosylated antibodies with high titers and comparable product quality.
    Louie S; Haley B; Marshall B; Heidersbach A; Yim M; Brozynski M; Tang D; Lam C; Petryniak B; Shaw D; Shim J; Miller A; Lowe JB; Snedecor B; Misaghi S
    Biotechnol Bioeng; 2017 Mar; 114(3):632-644. PubMed ID: 27666939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycan engineering reveals interrelated effects of terminal galactose and core fucose on antibody-dependent cell-mediated cytotoxicity.
    Zhang Q; Joubert MK; Polozova A; De Guzman R; Lakamsani K; Kinderman F; Xiang D; Shami A; Miscalichi N; Flynn GC; Kuhns S
    Biotechnol Prog; 2020 Nov; 36(6):e3045. PubMed ID: 32627435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Algal lectin binding to core (α1-6) fucosylated N-glycans: structural basis for specificity and production of recombinant protein.
    do Nascimento AS; Serna S; Beloqui A; Arda A; Sampaio AH; Walcher J; Ott D; Unverzagt C; Reichardt NC; Jimenez-Barbero J; Nascimento KS; Imberty A; Cavada BS; Varrot A
    Glycobiology; 2015 Jun; 25(6):607-16. PubMed ID: 25573275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types.
    Kanda Y; Yamada T; Mori K; Okazaki A; Inoue M; Kitajima-Miyama K; Kuni-Kamochi R; Nakano R; Yano K; Kakita S; Shitara K; Satoh M
    Glycobiology; 2007 Jan; 17(1):104-18. PubMed ID: 17012310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Profiles of plant core-fucosylated N-glycans of acid alpha-glucosidases produced in transgenic rice cell suspension cultures treated with eight different conditions.
    Kim J; Do J; Choi HY; Kim SD; Park H; You S; Kim W; Jang Y; Kim D; Lee J; Ha J; Ji M; Kim DI; Kim HH
    Enzyme Microb Technol; 2020 Mar; 134():109482. PubMed ID: 32044029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational effects of N-glycan core fucosylation of immunoglobulin G Fc region on its interaction with Fcγ receptor IIIa.
    Sakae Y; Satoh T; Yagi H; Yanaka S; Yamaguchi T; Isoda Y; Iida S; Okamoto Y; Kato K
    Sci Rep; 2017 Oct; 7(1):13780. PubMed ID: 29062024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative evaluation of fucose reducing effects in a humanized antibody on Fcγ receptor binding and antibody-dependent cell-mediated cytotoxicity activities.
    Chung S; Quarmby V; Gao X; Ying Y; Lin L; Reed C; Fong C; Lau W; Qiu ZJ; Shen A; Vanderlaan M; Song A
    MAbs; 2012; 4(3):326-40. PubMed ID: 22531441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycoengineered Pichia produced anti-HER2 is comparable to trastuzumab in preclinical study.
    Zhang N; Liu L; Dumitru CD; Cummings NR; Cukan M; Jiang Y; Li Y; Li F; Mitchell T; Mallem MR; Ou Y; Patel RN; Vo K; Wang H; Burnina I; Choi BK; Huber HE; Stadheim TA; Zha D
    MAbs; 2011; 3(3):289-98. PubMed ID: 21487242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins.
    Liu L
    J Pharm Sci; 2015 Jun; 104(6):1866-1884. PubMed ID: 25872915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro.
    Hodoniczky J; Zheng YZ; James DC
    Biotechnol Prog; 2005; 21(6):1644-52. PubMed ID: 16321047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production, characterization, and pharmacokinetic properties of antibodies with N-linked mannose-5 glycans.
    Yu M; Brown D; Reed C; Chung S; Lutman J; Stefanich E; Wong A; Stephan JP; Bayer R
    MAbs; 2012; 4(4):475-87. PubMed ID: 22699308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.