These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29090641)

  • 1. Evaluation of a Method for Determining Binaural Sensitivity to Temporal Fine Structure (TFS-AF Test) for Older Listeners With Normal and Impaired Low-Frequency Hearing.
    Füllgrabe C; Moore BCJ
    Trends Hear; 2017; 21():2331216517737230. PubMed ID: 29090641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a method for determining binaural sensitivity to temporal fine structure.
    Füllgrabe C; Harland AJ; Sęk AP; Moore BCJ
    Int J Audiol; 2017 Dec; 56(12):926-935. PubMed ID: 28859494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring Binaural Temporal-Fine-Structure Sensitivity in Hearing-Impaired Listeners, Using the TFS-AF Test.
    Mathew DS; Sreenivasan A; Alexander A; Palani S
    J Am Acad Audiol; 2020 Feb; 31(2):105-110. PubMed ID: 31241450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Senescent Changes in Sensitivity to Binaural Temporal Fine Structure.
    Füllgrabe C; Sęk AP; Moore BCJ
    Trends Hear; 2018; 22():2331216518788224. PubMed ID: 30027803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectrotemporal modulation sensitivity as a predictor of speech intelligibility for hearing-impaired listeners.
    Bernstein JG; Mehraei G; Shamma S; Gallun FJ; Theodoroff SM; Leek MR
    J Am Acad Audiol; 2013 Apr; 24(4):293-306. PubMed ID: 23636210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Association Between the Processing of Binaural Temporal-Fine-Structure Information and Audiometric Threshold and Age: A Meta-Analysis.
    Füllgrabe C; Moore BCJ
    Trends Hear; 2018; 22():2331216518797259. PubMed ID: 30261828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of binaural temporal fine structure sensitivity in children.
    Flanagan SA; Moore BCJ; Wilson AM; Gabrielczyk FC; MacFarlane A; Mandke K; Goswami U
    J Acoust Soc Am; 2021 Oct; 150(4):2967. PubMed ID: 34717481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suprathreshold auditory processing and speech perception in noise: hearing-impaired and normal-hearing listeners.
    Summers V; Makashay MJ; Theodoroff SM; Leek MR
    J Am Acad Audiol; 2013 Apr; 24(4):274-92. PubMed ID: 23636209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal Fine-Structure Coding and Lateralized Speech Perception in Normal-Hearing and Hearing-Impaired Listeners.
    Lőcsei G; Pedersen JH; Laugesen S; Santurette S; Dau T; MacDonald EN
    Trends Hear; 2016 Sep; 20():. PubMed ID: 27601071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical Correlates of Binaural Temporal Processing Deficits in Older Adults.
    Eddins AC; Eddins DA
    Ear Hear; 2018; 39(3):594-604. PubMed ID: 29135686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binaural sensitivity and release from speech-on-speech masking in listeners with and without hearing loss.
    Baltzell LS; Swaminathan J; Cho AY; Lavandier M; Best V
    J Acoust Soc Am; 2020 Mar; 147(3):1546. PubMed ID: 32237845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of reference interaural time and intensity differences on binaural performance in listeners with normal and impaired hearing.
    Koehnke J; Culotta CP; Hawley ML; Colburn HS
    Ear Hear; 1995 Aug; 16(4):331-53. PubMed ID: 8549890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-Related Changes in Interaural-Level-Difference-Based Across-Frequency Binaural Interference.
    Goupell MJ
    Front Aging Neurosci; 2022; 14():887401. PubMed ID: 35966775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of age and high-frequency hearing loss on sensitivity to temporal fine structure at low frequencies (L).
    Moore BC; Glasberg BR; Stoev M; Füllgrabe C; Hopkins K
    J Acoust Soc Am; 2012 Feb; 131(2):1003-6. PubMed ID: 22352474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparison of Behavioral Methods for Indexing the Auditory Processing of Temporal Fine Structure Cues.
    Hoover EC; Kinney BN; Bell KL; Gallun FJ; Eddins DA
    J Speech Lang Hear Res; 2019 Jun; 62(6):2018-2034. PubMed ID: 31145649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of age and hearing loss on interaural phase difference discrimination.
    King A; Hopkins K; Plack CJ
    J Acoust Soc Am; 2014 Jan; 135(1):342-51. PubMed ID: 24437774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensorineural Hearing Loss Diminishes Use of Temporal Envelope Cues: Evidence From Roving-Level Tone-in-Noise Detection.
    Leong UC; Schwarz DM; Henry KS; Carney LH
    Ear Hear; 2020; 41(4):1009-1019. PubMed ID: 31985535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-path model of auditory modulation detection using temporal fine structure and envelope cues.
    Ewert SD; Paraouty N; Lorenzi C
    Eur J Neurosci; 2020 Mar; 51(5):1265-1278. PubMed ID: 29368797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relations between frequency selectivity, temporal fine-structure processing, and speech reception in impaired hearing.
    Strelcyk O; Dau T
    J Acoust Soc Am; 2009 May; 125(5):3328-45. PubMed ID: 19425674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral contributions to the benefit from spatial separation of speech and noise.
    Dubno JR; Ahlstrom JB; Horwitz AR
    J Speech Lang Hear Res; 2002 Dec; 45(6):1297-310. PubMed ID: 12546495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.