These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 29090898)
1. Pulsed Electrochemical Mass Spectrometry for Operando Tracking of Interfacial Processes in Small-Time-Constant Electrochemical Devices such as Supercapacitors. Batisse N; Raymundo-Piñero E ACS Appl Mater Interfaces; 2017 Nov; 9(47):41224-41232. PubMed ID: 29090898 [TBL] [Abstract][Full Text] [Related]
2. Cell voltage versus electrode potential range in aqueous supercapacitors. Dai Z; Peng C; Chae JH; Ng KC; Chen GZ Sci Rep; 2015 Apr; 5():9854. PubMed ID: 25897670 [TBL] [Abstract][Full Text] [Related]
3. Exploring the Carbon/Electrolyte Interface in Supercapacitors Operating in Highly Concentrated Aqueous Electrolytes. Neto C; Pham HTT; Omnée R; Canizarès A; Slodczyk A; Deschamps M; Raymundo-Piñero E ACS Appl Mater Interfaces; 2022 Oct; 14(39):44405-44418. PubMed ID: 36150165 [TBL] [Abstract][Full Text] [Related]
4. Noncovalent Pi-Pi Stacking at the Carbon-Electrolyte Interface: Controlling the Voltage Window of Electrochemical Supercapacitors. Li M; Westover AS; Carter R; Oakes L; Muralidharan N; Boire TC; Sung HJ; Pint CL ACS Appl Mater Interfaces; 2016 Aug; 8(30):19558-66. PubMed ID: 27380273 [TBL] [Abstract][Full Text] [Related]
5. Nucleotide-Tackified Organohydrogel Electrolyte for Environmentally Self-Adaptive Flexible Supercapacitor with Robust Electrolyte/Electrode Interface. Zhang Q; Hou X; Liu X; Xie X; Duan L; Lü W; Gao G Small; 2021 Nov; 17(46):e2103091. PubMed ID: 34643034 [TBL] [Abstract][Full Text] [Related]
6. Operando Monitoring of Local pH Value Changes at the Carbon Electrode Surface in Neutral Sulfate-Based Aqueous Electrochemical Capacitors. Slesinski A; Sroka S; Fic K; Frackowiak E; Menzel J ACS Appl Mater Interfaces; 2022 Aug; 14(33):37782-37792. PubMed ID: 35946232 [TBL] [Abstract][Full Text] [Related]
7. On the configuration of supercapacitors for maximizing electrochemical performance. Zhang J; Zhao XS ChemSusChem; 2012 May; 5(5):818-41. PubMed ID: 22550045 [TBL] [Abstract][Full Text] [Related]
8. Fabricating an Aqueous Symmetric Supercapacitor with a Stable High Working Voltage of 2 V by Using an Alkaline-Acidic Electrolyte. Li C; Wu W; Wang P; Zhou W; Wang J; Chen Y; Fu L; Zhu Y; Wu Y; Huang W Adv Sci (Weinh); 2019 Jan; 6(1):1801665. PubMed ID: 30643731 [TBL] [Abstract][Full Text] [Related]
9. Electrolyte-philicity of electrode materials. Zhao L; Ran F Chem Commun (Camb); 2023 Jun; 59(46):6969-6986. PubMed ID: 37165689 [TBL] [Abstract][Full Text] [Related]
10. Dioxythiophene-based polymer electrodes for supercapacitor modules. Liu DY; Reynolds JR ACS Appl Mater Interfaces; 2010 Dec; 2(12):3586-93. PubMed ID: 21090685 [TBL] [Abstract][Full Text] [Related]
11. Poly(vinyl Alcohol) Borate Gel Polymer Electrolytes Prepared by Electrodeposition and Their Application in Electrochemical Supercapacitors. Jiang M; Zhu J; Chen C; Lu Y; Ge Y; Zhang X ACS Appl Mater Interfaces; 2016 Feb; 8(5):3473-81. PubMed ID: 26788748 [TBL] [Abstract][Full Text] [Related]
12. Wearable Solid-State Supercapacitors Operating at High Working Voltage with a Flexible Nanocomposite Electrode. Li X; Wang J; Zhao Y; Ge F; Komarneni S; Cai Z ACS Appl Mater Interfaces; 2016 Oct; 8(39):25905-25914. PubMed ID: 27618744 [TBL] [Abstract][Full Text] [Related]
13. Quantification of the Charge Consuming Phenomena under High-Voltage Hold of Carbon/Carbon Supercapacitors by Coupling Operando and Post-Mortem Analyses. Przygocki P; Ratajczak P; Béguin F Angew Chem Int Ed Engl; 2019 Dec; 58(50):17969-17977. PubMed ID: 31595662 [TBL] [Abstract][Full Text] [Related]
14. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Liu L; Niu Z; Chen J Chem Soc Rev; 2016 Jul; 45(15):4340-63. PubMed ID: 27263796 [TBL] [Abstract][Full Text] [Related]
15. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors. Karnan M; Subramani K; Sudhan N; Ilayaraja N; Sathish M ACS Appl Mater Interfaces; 2016 Dec; 8(51):35191-35202. PubMed ID: 27977134 [TBL] [Abstract][Full Text] [Related]
17. In situ analytical techniques for battery interface analysis. Tripathi AM; Su WN; Hwang BJ Chem Soc Rev; 2018 Feb; 47(3):736-851. PubMed ID: 29308803 [TBL] [Abstract][Full Text] [Related]
18. TiN Paper for Ultrafast-Charging Supercapacitors. Yao B; Li M; Zhang J; Zhang L; Song Y; Xiao W; Cruz A; Tong Y; Li Y Nanomicro Lett; 2019 Dec; 12(1):3. PubMed ID: 34138084 [TBL] [Abstract][Full Text] [Related]
19. Diamond Supercapacitors: Towards Durable, Safe, and Biocompatible Aqueous-Based Energy Storage. Chambers A; Prawer S; Ahnood A; Zhan H Front Chem; 2022; 10():924127. PubMed ID: 35668830 [TBL] [Abstract][Full Text] [Related]
20. Charging and discharging a supercapacitor in molecular simulations. Sitlapersad RS; Thornton AR; den Otter WK J Chem Phys; 2024 Jan; 160(4):. PubMed ID: 38275193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]