These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 29090906)

  • 41. Amorphous Phosphorus/Nitrogen-Doped Graphene Paper for Ultrastable Sodium-Ion Batteries.
    Zhang C; Wang X; Liang Q; Liu X; Weng Q; Liu J; Yang Y; Dai Z; Ding K; Bando Y; Tang J; Golberg D
    Nano Lett; 2016 Mar; 16(3):2054-60. PubMed ID: 26928163
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries.
    Xu X; Ji S; Gu M; Liu J
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20957-64. PubMed ID: 26336101
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Growth of ultrathin MoS₂ nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes.
    Zhang S; Yu X; Yu H; Chen Y; Gao P; Li C; Zhu C
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21880-5. PubMed ID: 25479568
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries.
    Song J; Yu Z; Gordin ML; Hu S; Yi R; Tang D; Walter T; Regula M; Choi D; Li X; Manivannan A; Wang D
    Nano Lett; 2014 Nov; 14(11):6329-35. PubMed ID: 25354313
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes.
    Wang J; Meng X; Fan X; Zhang W; Zhang H; Wang C
    ACS Nano; 2015 Jun; 9(6):6576-86. PubMed ID: 26014439
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-Performance Sb/Sb2 O3 Anode Materials Using a Polypyrrole Nanowire Network for Na-Ion Batteries.
    Nam DH; Hong KS; Lim SJ; Kim MJ; Kwon HS
    Small; 2015 Jun; 11(24):2885-92. PubMed ID: 25809290
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance.
    Shin HS; Jung KN; Jo YN; Park MS; Kim H; Lee JW
    Sci Rep; 2016 May; 6():26195. PubMed ID: 27189834
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In Situ Binding Sb Nanospheres on Graphene via Oxygen Bonds as Superior Anode for Ultrafast Sodium-Ion Batteries.
    Wan F; Guo JZ; Zhang XH; Zhang JP; Sun HZ; Yan Q; Han DX; Niu L; Wu XL
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7790-9. PubMed ID: 26960386
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of one-dimensional copper sulfide nanorods as high-performance anode in lithium ion batteries.
    Li X; He X; Shi C; Liu B; Zhang Y; Wu S; Zhu Z; Zhao J
    ChemSusChem; 2014 Dec; 7(12):3328-33. PubMed ID: 25354020
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrospun TiO2/C Nanofibers As a High-Capacity and Cycle-Stable Anode for Sodium-Ion Batteries.
    Xiong Y; Qian J; Cao Y; Ai X; Yang H
    ACS Appl Mater Interfaces; 2016 Jul; 8(26):16684-9. PubMed ID: 27311835
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-performance FeSb-TiC-C nanocomposite anodes for sodium-ion batteries.
    Kim IT; Allcorn E; Manthiram A
    Phys Chem Chem Phys; 2014 Jul; 16(25):12884-9. PubMed ID: 24848297
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Colloidal Antimony Sulfide Nanoparticles as a High-Performance Anode Material for Li-ion and Na-ion Batteries.
    Kravchyk KV; Kovalenko MV; Bodnarchuk MI
    Sci Rep; 2020 Feb; 10(1):2554. PubMed ID: 32054956
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Building Self-Healing Alloy Architecture for Stable Sodium-Ion Battery Anodes: A Case Study of Tin Anode Materials.
    Mao J; Fan X; Luo C; Wang C
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7147-55. PubMed ID: 26937998
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An artificial aluminum-tin alloy layer on aluminum metal anodes for ultra-stable rechargeable aluminum-ion batteries.
    Wang X; Zhao C; Luo P; Xin Y; Ge Y; Tian H
    Nanoscale; 2024 Jul; 16(27):13171-13182. PubMed ID: 38913445
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Solvothermal-Derived S-Doped Graphene as an Anode Material for Sodium-Ion Batteries.
    Quan B; Jin A; Yu SH; Kang SM; Jeong J; Abruña HD; Jin L; Piao Y; Sung YE
    Adv Sci (Weinh); 2018 May; 5(5):1700880. PubMed ID: 29876213
    [TBL] [Abstract][Full Text] [Related]  

  • 56. SnSe alloy as a promising anode material for Na-ion batteries.
    Kim Y; Kim Y; Park Y; Jo YN; Kim YJ; Choi NS; Lee KT
    Chem Commun (Camb); 2015 Jan; 51(1):50-3. PubMed ID: 25360450
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Size and Composition Effects in Sb-Carbon Nanocomposites for Sodium-Ion Batteries.
    Ramireddy T; Sharma N; Xing T; Chen Y; Leforestier J; Glushenkov AM
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30152-30164. PubMed ID: 27753471
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Atom-Level Understanding of the Sodiation Process in Silicon Anode Material.
    Jung SC; Jung DS; Choi JW; Han YK
    J Phys Chem Lett; 2014 Apr; 5(7):1283-8. PubMed ID: 26274485
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interface engineering of metal sulfides-based composites enables high-performance anode materials for sodium-ion batteries.
    Wang S; Xie S; Zhang M; Jiang Y; Luo H; Tang J; Zheng F; Li Q; Wang H; Pan Q
    J Colloid Interface Sci; 2024 Jun; 663():387-395. PubMed ID: 38412724
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metallic Sn-Based Anode Materials: Application in High-Performance Lithium-Ion and Sodium-Ion Batteries.
    Ying H; Han WQ
    Adv Sci (Weinh); 2017 Nov; 4(11):1700298. PubMed ID: 29201624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.