These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29090957)

  • 1. An Emerging Role for Megalin as a Regulator of Protein Leak in Acute Lung Injury.
    Suber T; Mallampalli RK
    Am J Respir Cell Mol Biol; 2017 Nov; 57(5):504-505. PubMed ID: 29090957
    [No Abstract]   [Full Text] [Related]  

  • 2. Restoration of Megalin-Mediated Clearance of Alveolar Protein as a Novel Therapeutic Approach for Acute Lung Injury.
    Vohwinkel CU; Buchäckert Y; Al-Tamari HM; Mazzocchi LC; Eltzschig HK; Mayer K; Morty RE; Herold S; Seeger W; Pullamsetti SS; Vadász I
    Am J Respir Cell Mol Biol; 2017 Nov; 57(5):589-602. PubMed ID: 28678521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative and Natural Therapies for Acute Lung Injury and Acute Respiratory Distress Syndrome.
    Patel VJ; Biswas Roy S; Mehta HJ; Joo M; Sadikot RT
    Biomed Res Int; 2018; 2018():2476824. PubMed ID: 29862257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The efficacy of mesenchymal stromal cell-derived therapies for acute respiratory distress syndrome-a meta-analysis of preclinical trials.
    Wang F; Fang B; Qiang X; Shao J; Zhou L
    Respir Res; 2020 Nov; 21(1):307. PubMed ID: 33218340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delayed Alveolar Epithelialization: A Distinct Pathology in Diffuse Acute Lung Injury.
    Taylor MS; Chivukula RR; Myers LC; Jeck WR; Tata PR; O'Donnell WJ; Farver CF; Thompson BT; Rajagopal J; Kradin RL
    Am J Respir Crit Care Med; 2018 Feb; 197(4):522-524. PubMed ID: 28696778
    [No Abstract]   [Full Text] [Related]  

  • 6. Adenosine at the Interphase of Hypoxia and Inflammation in Lung Injury.
    Li X; Berg NK; Mills T; Zhang K; Eltzschig HK; Yuan X
    Front Immunol; 2020; 11():604944. PubMed ID: 33519814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dexamethasone fails to improve bleomycin-induced acute lung injury in mice.
    Aubin Vega M; Chupin C; Pascariu M; Privé A; Dagenais A; Berthiaume Y; Brochiero E
    Physiol Rep; 2019 Nov; 7(21):e14253. PubMed ID: 31724341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of p21 limits acute lung injury and induces early senescence after acid aspiration and mechanical ventilation.
    Blázquez-Prieto J; Huidobro C; López-Alonso I; Amado-Rodriguez L; Martín-Vicente P; López-Martínez C; Crespo I; Pantoja C; Fernandez-Marcos PJ; Serrano M; Sznajder JI; Albaiceta GM
    Transl Res; 2021 Jul; 233():104-116. PubMed ID: 33515780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HIF2α signaling inhibits adherens junctional disruption in acute lung injury.
    Gong H; Rehman J; Tang H; Wary K; Mittal M; Chaturvedi P; Zhao YY; Komarova YA; Vogel SM; Malik AB
    J Clin Invest; 2015 Feb; 125(2):652-64. PubMed ID: 25574837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial Damage-Associated Molecular Patterns Exacerbate Lung Fluid Imbalance Via the Formyl Peptide Receptor-1 Signaling Pathway in Acute Lung Injury.
    Yuan ZC; Zeng N; Liu L; Wang T; Dai LQ; Wang H; Zeng ZJ; Cao YF; Zhou YF; Xu D; Shen YC; Wen FQ
    Crit Care Med; 2021 Jan; 49(1):e53-e62. PubMed ID: 33165026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Air pollution impairs recovery and tissue remodeling in a murine model of acute lung injury.
    de Souza Xavier Costa N; Ribeiro Júnior G; Dos Santos Alemany AA; Belotti L; Schalch AS; Cavalcante MF; Ribeiro S; Veras MM; Kallás EG; Saldiva PHN; Dolhnikoff M; Ferraz da Silva LF
    Sci Rep; 2020 Sep; 10(1):15314. PubMed ID: 32943719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct functions of megalin and cubilin receptors in recovery of normal and nephrotic levels of filtered albumin.
    Ren Q; Weyer K; Rbaibi Y; Long KR; Tan RJ; Nielsen R; Christensen EI; Baty CJ; Kashlan OB; Weisz OA
    Am J Physiol Renal Physiol; 2020 May; 318(5):F1284-F1294. PubMed ID: 32200668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional interaction of megalin with the megalinbinding protein (MegBP), a novel tetratrico peptide repeat-containing adaptor molecule.
    Petersen HH; Hilpert J; Militz D; Zandler V; Jacobsen C; Roebroek AJ; Willnow TE
    J Cell Sci; 2003 Feb; 116(Pt 3):453-61. PubMed ID: 12508107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Prostaglandin F
    Maehara T; Fujimori K
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. miR-221-5p-Mediated Downregulation of JNK2 Aggravates Acute Lung Injury.
    Yang J; Do-Umehara HC; Zhang Q; Wang H; Hou C; Dong H; Perez EA; Sala MA; Anekalla KR; Walter JM; Liu S; Wunderink RG; Budinger GRS; Liu J
    Front Immunol; 2021; 12():700933. PubMed ID: 34899681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The receptor for advanced glycation end products and acute lung injury/acute respiratory distress syndrome.
    Guo WA; Knight PR; Raghavendran K
    Intensive Care Med; 2012 Oct; 38(10):1588-98. PubMed ID: 22777515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ARH directs megalin to the endocytic recycling compartment to regulate its proteolysis and gene expression.
    Shah M; Baterina OY; Taupin V; Farquhar MG
    J Cell Biol; 2013 Jul; 202(1):113-27. PubMed ID: 23836931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The adaptor protein ARH escorts megalin to and through endosomes.
    Nagai M; Meerloo T; Takeda T; Farquhar MG
    Mol Biol Cell; 2003 Dec; 14(12):4984-96. PubMed ID: 14528014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Megalin-mediated albumin endocytosis in cultured murine mesangial cells.
    Bryniarski MA; Yee BM; Chaves LD; Stahura CM; Yacoub R; Morris ME
    Biochem Biophys Res Commun; 2020 Aug; 529(3):740-746. PubMed ID: 32736701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Albumin endocytosis via megalin in astrocytes is caveola- and Dab-1 dependent and is required for the synthesis of the neurotrophic factor oleic acid.
    Bento-Abreu A; Velasco A; Polo-Hernández E; Lillo C; Kozyraki R; Tabernero A; Medina JM
    J Neurochem; 2009 Oct; 111(1):49-60. PubMed ID: 19656258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.