These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 29091097)
1. Stereocomplexed physical hydrogels with high strength and tunable crystallizability. Cao H; Chang X; Mao H; Zhou J; Wu ZL; Shan G; Bao Y; Pan P Soft Matter; 2017 Nov; 13(45):8502-8510. PubMed ID: 29091097 [TBL] [Abstract][Full Text] [Related]
2. Stereocomplexed and homocrystalline thermo-responsive physical hydrogels with a tunable network structure and thermo-responsiveness. Liu K; Cao H; Yuan W; Bao Y; Shan G; Wu ZL; Pan P J Mater Chem B; 2020 Sep; 8(35):7947-7955. PubMed ID: 32756668 [TBL] [Abstract][Full Text] [Related]
3. Thermoresponsive physical hydrogels of poly(lactic acid)/poly(ethylene glycol) stereoblock copolymers tuned by stereostructure and hydrophobic block sequence. Mao H; Shan G; Bao Y; Wu ZL; Pan P Soft Matter; 2016 May; 12(20):4628-37. PubMed ID: 27121732 [TBL] [Abstract][Full Text] [Related]
4. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers. Hiemstra C; Zhong Z; Li L; Dijkstra PJ; Feijen J Biomacromolecules; 2006 Oct; 7(10):2790-5. PubMed ID: 17025354 [TBL] [Abstract][Full Text] [Related]
5. Relationship between the Stereocomplex Crystallization Behavior and Mechanical Properties of PLLA/PDLA Blends. Park HS; Hong CK Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34199577 [TBL] [Abstract][Full Text] [Related]
6. Polymorphic Crystallization and Crystalline Reorganization of Poly(l-lactic acid)/Poly(d-lactic acid) Racemic Mixture Influenced by Blending with Poly(vinylidene fluoride). Yu C; Han L; Bao J; Shan G; Bao Y; Pan P J Phys Chem B; 2016 Aug; 120(32):8046-54. PubMed ID: 27414064 [TBL] [Abstract][Full Text] [Related]
7. Promoted formation of stereocomplex in enantiomeric poly(lactic acid)s induced by cellulose nanofibers. Ren Q; Wu M; Weng Z; Zhu X; Li W; Huang P; Wang L; Zheng W; Ohshima M Carbohydr Polym; 2022 Jan; 276():118800. PubMed ID: 34823806 [TBL] [Abstract][Full Text] [Related]
8. Preferential formation of stereocomplex crystals in poly(L-lactic acid)/poly(D-lactic acid) blends by a fullerene nucleator. Chang WW; Niu J; Peng H; Rong W Int J Biol Macromol; 2023 Dec; 253(Pt 5):127230. PubMed ID: 37797850 [TBL] [Abstract][Full Text] [Related]
9. Gelation upon the Mixing of Amphiphilic Graft and Triblock Copolymers Containing Enantiomeric Polylactide Segments through Stereocomplex Formation. Ohya Y; Yoshida Y; Kumagae T; Kuzuya A Gels; 2024 Feb; 10(2):. PubMed ID: 38391469 [TBL] [Abstract][Full Text] [Related]
10. Tailor-Made Dispersion and Distribution of Stereocomplex Crystallites in Poly(l-lactide)/Elastomer Blends toward Largely Enhanced Crystallization Rate and Impact Toughness. Luo Y; Ju Y; Bai H; Liu Z; Zhang Q; Fu Q J Phys Chem B; 2017 Jun; 121(25):6271-6279. PubMed ID: 28587466 [TBL] [Abstract][Full Text] [Related]
11. Exclusive Stereocomplex Crystallization of Linear and Multiarm Star-Shaped High-Molecular-Weight Stereo Diblock Poly(lactic acid)s. Han L; Shan G; Bao Y; Pan P J Phys Chem B; 2015 Nov; 119(44):14270-9. PubMed ID: 26457767 [TBL] [Abstract][Full Text] [Related]
12. Surface Modification of Poly(l-lactic acid) through Stereocomplexation with Enantiomeric Poly(d-lactic acid) and Its Copolymer. Zhu Q; Chang K; Qi L; Li X; Gao W; Gao Q Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34072033 [TBL] [Abstract][Full Text] [Related]
13. Structure Mediation and Properties of Poly( Yang B; Wang R; Ma HL; Li X; Brünig H; Dong Z; Qi Y; Zhang X Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961279 [TBL] [Abstract][Full Text] [Related]
14. Effect of stereocomplex crystal and flexible segments on the crystallization and tensile behavior of poly(l-lactide). Li X; Zhang X; Liu G; Yang Z; Yang B; Qi Y; Wang R; Wang DY RSC Adv; 2018 Aug; 8(50):28453-28460. PubMed ID: 35542484 [TBL] [Abstract][Full Text] [Related]
15. Competitive Stereocomplexation and Homocrystallization Behaviors in the Poly(lactide) Blends of PLLA and PDLA-PEG-PDLA with Controlled Block Length. Jing Z; Shi X; Zhang G Polymers (Basel); 2017 Mar; 9(3):. PubMed ID: 30970786 [TBL] [Abstract][Full Text] [Related]
16. Enhanced stereocomplex formation of poly(L-lactic acid) and poly(D-lactic acid) in the presence of stereoblock poly(lactic acid). Fukushima K; Chang YH; Kimura Y Macromol Biosci; 2007 Jun; 7(6):829-35. PubMed ID: 17541929 [TBL] [Abstract][Full Text] [Related]
17. Crystallization, rheology and mechanical properties of the blends of poly(l-lactide) with supramolecular polymers based on poly(d-lactide)-poly(ε-caprolactone- Jing Z; Li J; Xiao W; Xu H; Hong P; Li Y RSC Adv; 2019 Aug; 9(45):26067-26079. PubMed ID: 35531016 [TBL] [Abstract][Full Text] [Related]
18. Remarkably enhanced stereocomplex crystallization of high-molar-mass enantiomeric polylactide blends by adding double-grafted copolymers. Yuan L; Deng S; Wang Y; Xiu H; Zhang Q; Bai H Int J Biol Macromol; 2024 Feb; 258(Pt 1):128919. PubMed ID: 38134994 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of high-performance poly(l-lactic acid)/lignin-graft-poly(d-lactic acid) stereocomplex films. Liu R; Dai L; Hu LQ; Zhou WQ; Si CL Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():397-403. PubMed ID: 28866180 [TBL] [Abstract][Full Text] [Related]
20. Formation of Stereocomplex Crystal and Its Effect on the Morphology and Property of PDLA/PLLA Blends. Su X; Feng L; Yu D Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33126708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]