BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 29091397)

  • 1. Nanoscale Properties of Human Telomeres Measured with a Dual Purpose X-ray Fluorescence and Super Resolution Microscopy Gold Nanoparticle Probe.
    Jeynes JCG; Geraki K; Jeynes C; Zhaohong M; Bettiol AA; Latorre E; Harries LW; Soeller C
    ACS Nano; 2017 Dec; 11(12):12632-12640. PubMed ID: 29091397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticles as Nonfluorescent Analogues of Fluorophores for Optical Nanoscopy.
    Hennig S; Mönkemöller V; Böger C; Müller M; Huser T
    ACS Nano; 2015 Jun; 9(6):6196-205. PubMed ID: 25950994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and Characterization of Dye-Doped Au@SiO
    Thompson S; Jorns M; Pappas D
    Appl Spectrosc; 2022 Nov; 76(11):1367-1374. PubMed ID: 36281541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual labeled fluorescence probe based qPCR assay to measure the telomere length.
    Sethi I; Bhat GR; Kumar R; Rai E; Sharma S
    Gene; 2021 Jan; 767():145178. PubMed ID: 33007378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets.
    Liu Y; Wu P
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5832-44. PubMed ID: 23734937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bovine Serum Albumin-Conjugated Red Emissive Gold Nanocluster as a Fluorescent Nanoprobe for Super-resolution Microscopy.
    Yadav A; Verma NC; Rao C; Mishra PM; Jaiswal A; Nandi CK
    J Phys Chem Lett; 2020 Jul; 11(14):5741-5748. PubMed ID: 32597664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Enhanced Raman Scattering Based in Situ Hybridization Strategy for Telomere Length Assessment.
    Zong S; Chen C; Wang Z; Zhang Y; Cui Y
    ACS Nano; 2016 Feb; 10(2):2950-9. PubMed ID: 26812475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence microscopy methods for examining telomeres during cell aging.
    Adam N; Beattie TL; Riabowol K
    Ageing Res Rev; 2021 Jul; 68():101320. PubMed ID: 33744488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly sensitive gold nanoparticles-based optical sensing of DNA hybridization using bis(8-hydroxyquinoline-5-solphonate)cerium(III) chloride as a novel fluorescence probe.
    Shamsipur M; Memari Z; Ganjali MR; Norouzi P; Faridbod F
    J Pharm Biomed Anal; 2016 Jan; 118():356-362. PubMed ID: 26600117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticle-based colorimetric and "turn-on" fluorescent probe for mercury(II) ions in aqueous solution.
    Wang H; Wang Y; Jin J; Yang R
    Anal Chem; 2008 Dec; 80(23):9021-8. PubMed ID: 19551976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Super-Resolution Imaging of Telomeres with DNA-PAINT.
    Liu Y; Ye X; Wang Z; Zong S; Cui Y
    ACS Omega; 2022 Nov; 7(44):40512-40519. PubMed ID: 36385813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanoparticles and fluorescently-labelled DNA as a platform for biological sensing.
    Heuer-Jungemann A; Harimech PK; Brown T; Kanaras AG
    Nanoscale; 2013 Oct; 5(20):9503-10. PubMed ID: 23982570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional x-ray fluorescence mapping of a gold nanoparticle-loaded phantom.
    Ren L; Wu D; Li Y; Wang G; Wu X; Liu H
    Med Phys; 2014 Mar; 41(3):031902. PubMed ID: 24593720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid-cell scanning transmission electron microscopy and fluorescence correlation spectroscopy of DNA-directed gold nanoparticle assemblies.
    Jungjohann KL; Wheeler DR; Polsky R; Brozik SM; Brozik JA; Rudolph AR
    Micron; 2019 Apr; 119():54-63. PubMed ID: 30660856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor-responsive fluorescent light-up probe based on a gold nanoparticle/conjugated polyelectrolyte hybrid.
    Yuan Y; Ding D; Li K; Liu J; Liu B
    Small; 2014 May; 10(10):1967-75. PubMed ID: 24616338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A detailed study of gold-nanoparticle loaded cells using X-ray based techniques for cell-tracking applications with single-cell sensitivity.
    Astolfo A; Arfelli F; Schültke E; James S; Mancini L; Menk RH
    Nanoscale; 2013 Apr; 5(8):3337-45. PubMed ID: 23467621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an attenuation correction method for direct x-ray fluorescence (XRF) imaging utilizing gold L-shell XRF photons.
    Ahmed MF; Yasar S; Cho SH
    Med Phys; 2018 Dec; 45(12):5543-5554. PubMed ID: 30307623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Dual-Mode Imaging of Nanogold-Labeled Cells by Photoacoustic Microscopy and Fluorescence Optical Microscopy.
    Zhang Y; Tang Z; Wu Y; Xue Y; Jia J
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818793424. PubMed ID: 30249167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thrombin-activatable fluorescent peptide incorporated gold nanoparticles for dual optical/computed tomography thrombus imaging.
    Kwon SP; Jeon S; Lee SH; Yoon HY; Ryu JH; Choi D; Kim JY; Kim J; Park JH; Kim DE; Kwon IC; Kim K; Ahn CH
    Biomaterials; 2018 Jan; 150():125-136. PubMed ID: 29035738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative fluorescence in situ hybridization (QFISH) of telomere lengths in tissue and cells.
    O'Sullivan JN; Finley JC; Risques RA; Shen WT; Gollahon KA; Rabinovitch PS
    Curr Protoc Cytom; 2005 Aug; Chapter 12():Unit 12.6. PubMed ID: 18770817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.