These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29091399)

  • 1. Catalytically Initiated Gel-in-Gel Printing of Composite Hydrogels.
    Basu A; Saha A; Goodman C; Shafranek RT; Nelson A
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40898-40904. PubMed ID: 29091399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on temperature and near-infrared driving characteristics of hydrogel actuator fabricated via molding and 3D printing.
    Zhao Q; Liang Y; Ren L; Qiu F; Zhang Z; Ren L
    J Mech Behav Biomed Mater; 2018 Feb; 78():395-403. PubMed ID: 29223036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct-Ink Write 3D Printing Multistimuli-Responsive Hydrogels and Post-Functionalization Via Disulfide Exchange.
    Fellin CR; Nelson A
    ACS Appl Polym Mater; 2022 May; 4(5):3054-3061. PubMed ID: 38239328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-Printed Hydrogel Composites for Predictive Temporal (4D) Cellular Organizations and Patterned Biogenic Mineralization.
    McCracken JM; Rauzan BM; Kjellman JCE; Kandel ME; Liu YH; Badea A; Miller LA; Rogers SA; Popescu G; Nuzzo RG
    Adv Healthc Mater; 2019 Jan; 8(1):e1800788. PubMed ID: 30565889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 4D Printing of Multi-Hydrogels Using Direct Ink Writing in a Supporting Viscous Liquid.
    Uchida T; Onoe H
    Micromachines (Basel); 2019 Jun; 10(7):. PubMed ID: 31262078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Additive Manufacturing of Catalytically Active Living Materials.
    Saha A; Johnston TG; Shafranek RT; Goodman CJ; Zalatan JG; Storti DW; Ganter MA; Nelson A
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13373-13380. PubMed ID: 29608267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Supporting Nanoclay as Internal Scaffold Material for Direct Printing of Soft Hydrogel Composite Structures in Air.
    Jin Y; Liu C; Chai W; Compaan A; Huang Y
    ACS Appl Mater Interfaces; 2017 May; 9(20):17456-17465. PubMed ID: 28467835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Freeform Printing of Nanocomposite Hydrogels through
    Chen S; Jang TS; Pan HM; Jung HD; Sia MW; Xie S; Hang Y; Chong SKM; Wang D; Song J
    Int J Bioprint; 2020; 6(2):258. PubMed ID: 32782988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering.
    Jang TS; Jung HD; Pan HM; Han WT; Chen S; Song J
    Int J Bioprint; 2018; 4(1):126. PubMed ID: 33102909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications.
    Abbadessa A; Blokzijl MM; Mouser VH; Marica P; Malda J; Hennink WE; Vermonden T
    Carbohydr Polym; 2016 Sep; 149():163-74. PubMed ID: 27261741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking.
    Ouyang L; Highley CB; Rodell CB; Sun W; Burdick JA
    ACS Biomater Sci Eng; 2016 Oct; 2(10):1743-1751. PubMed ID: 33440472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triplet Fusion Upconversion for Photocuring 3D-Printed Particle-Reinforced Composite Networks.
    Wong J; Wei S; Meir R; Sadaba N; Ballinger NA; Harmon EK; Gao X; Altin-Yavuzarslan G; Pozzo LD; Campos LM; Nelson A
    Adv Mater; 2023 Mar; 35(11):e2207673. PubMed ID: 36594431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous Surface Polymerization via Fe(II)-Mediated Redox Reaction for Thick Hydrogel Coatings on Versatile Substrates.
    Ma S; Yan C; Cai M; Yang J; Wang X; Zhou F; Liu W
    Adv Mater; 2018 Dec; 30(50):e1803371. PubMed ID: 30311272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Jammed Microgel-Based Inks for 3D Printing of Complex Structures Transformable via pH/Temperature Variations.
    Moon D; Lee MG; Sun JY; Song KH; Doh J
    Macromol Rapid Commun; 2022 Oct; 43(19):e2200271. PubMed ID: 35686322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printing of a Double Network Hydrogel with a Compression Strength and Elastic Modulus Greater than those of Cartilage.
    Yang F; Tadepalli V; Wiley BJ
    ACS Biomater Sci Eng; 2017 May; 3(5):863-869. PubMed ID: 33440506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical patterning via dynamic sacrificial printing of stimuli-responsive hydrogels.
    Wen H; Li J; Payne GF; Feng Q; Liang M; Chen J; Dong H; Cao X
    Biofabrication; 2020 Apr; 12(3):035007. PubMed ID: 32155609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing.
    Markstedt K; Escalante A; Toriz G; Gatenholm P
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40878-40886. PubMed ID: 29068193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing.
    Zhang B; Li S; Hingorani H; Serjouei A; Larush L; Pawar AA; Goh WH; Sakhaei AH; Hashimoto M; Kowsari K; Magdassi S; Ge Q
    J Mater Chem B; 2018 May; 6(20):3246-3253. PubMed ID: 32254382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoclay-Based Self-Supporting Responsive Nanocomposite Hydrogels for Printing Applications.
    Jin Y; Shen Y; Yin J; Qian J; Huang Y
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10461-10470. PubMed ID: 29493213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron beam crosslinking of alginate/nanoclay ink to improve functional properties of 3D printed hydrogel for removing heavy metal ions.
    Shahbazi M; Jäger H; Ahmadi SJ; Lacroix M
    Carbohydr Polym; 2020 Jul; 240():116211. PubMed ID: 32475544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.