BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29091480)

  • 41. A comparison of electron beam dose calculation accuracy between treatment planning systems using either a pencil beam or a Monte Carlo algorithm.
    Ding GX; Cygler JE; Yu CW; Kalach NI; Daskalov G
    Int J Radiat Oncol Biol Phys; 2005 Oct; 63(2):622-33. PubMed ID: 16168854
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Monte Carlo simulation of small electron fields collimated by the integrated photon MLC.
    Mihaljevic J; Soukup M; Dohm O; Alber M
    Phys Med Biol; 2011 Feb; 56(3):829-43. PubMed ID: 21242628
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monte-Carlo-computed dose, kerma and fluence distributions in heterogeneous slab geometries irradiated by small megavoltage photon fields.
    Kumar S; Nahum AE; Chetty IJ
    Phys Med Biol; 2020 Sep; 65(17):175012. PubMed ID: 32485691
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Very high-energy electron dose calculation using the Fermi-Eyges theory of multiple scattering and a simplified pencil beam model.
    Ronga MG; Deut U; Bonfrate A; De Marzi L
    Med Phys; 2023 Dec; 50(12):8009-8022. PubMed ID: 37730956
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy.
    Dowling JA; Lambert J; Parker J; Salvado O; Fripp J; Capp A; Wratten C; Denham JW; Greer PB
    Int J Radiat Oncol Biol Phys; 2012 May; 83(1):e5-11. PubMed ID: 22330995
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calculation of the replacement correction factors for ion chambers in megavoltage beams by Monte Carlo simulation.
    Wang LL; Rogers DW
    Med Phys; 2008 May; 35(5):1747-55. PubMed ID: 18561649
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparing two radiotherapy techniques of whole central nervous system tumors, considering tumor and critical organs' dose provided by treatment planning system and direct measurement.
    Momeni S; Bahreyni Toosi MT; Anvari K; Gholamhosseinian H; Soleymanifard S
    J Cancer Res Ther; 2020; 16(6):1470-1475. PubMed ID: 33342815
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ion chamber and film-based quality assurance of mixed electron-photon radiation therapy.
    Heng VJ; Serban M; Seuntjens J; Renaud MA
    Med Phys; 2021 Sep; 48(9):5382-5395. PubMed ID: 34224144
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Generation and modelling of megavoltage photon beams for contrast-enhanced radiation therapy.
    Robar JL
    Phys Med Biol; 2006 Nov; 51(21):5487-504. PubMed ID: 17047265
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).
    Tian Z; Shi F; Folkerts M; Qin N; Jiang SB; Jia X
    Phys Med Biol; 2015 Oct; 60(19):7419-35. PubMed ID: 26352012
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of PENELOPE Monte Carlo dose calculations with Fricke dosimeter and ionization chamber measurements in heterogeneous phantoms (18 MeV electron and 12 MV photon beams).
    Blazy L; Baltes D; Bordy JM; Cutarella D; Delaunay F; Gouriou J; Leroy E; Ostrowsky A; Beaumont S
    Phys Med Biol; 2006 Nov; 51(22):5951-65. PubMed ID: 17068376
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Correcting for electron contamination at dose maximum in photon beams.
    Rogers DW
    Med Phys; 1999 Apr; 26(4):533-7. PubMed ID: 10227355
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Feasibility of external beam radiation therapy to deep-seated targets with kilovoltage x-rays.
    Bazalova-Carter M; Weil MD; Breitkreutz DY; Wilfley BP; Graves EE
    Med Phys; 2017 Feb; 44(2):597-607. PubMed ID: 28133751
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Validation of Monte Carlo calculated surface doses for megavoltage photon beams.
    Abdel-Rahman W; Seuntjens JP; Verhaegen F; Deblois F; Podgorsak EB
    Med Phys; 2005 Jan; 32(1):286-98. PubMed ID: 15719980
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optimum radiation source for radiation therapy of skin cancer.
    Safigholi H; Song WY; Meigooni AS
    J Appl Clin Med Phys; 2015 Sep; 16(5):219–227. PubMed ID: 26699302
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Surface dose reduction from bone interface in kilovoltage X-ray radiation therapy: a Monte Carlo study of photon spectra.
    Chow JC; Owrangi AM
    J Appl Clin Med Phys; 2012 Sep; 13(5):3911. PubMed ID: 22955657
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Combining tissue-phantom ratios to provide a beam-quality specifier for flattening filter free photon beams.
    Dalaryd M; Knöös T; Ceberg C
    Med Phys; 2014 Nov; 41(11):111716. PubMed ID: 25370630
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Monte Carlo modelling of radiotherapy kV x-ray units.
    Verhaegen F; Nahum AE; Van de Putte S; Namito Y
    Phys Med Biol; 1999 Jul; 44(7):1767-89. PubMed ID: 10442712
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Age-dependent comparison of monoenergetic photon organ and effective dose coefficients for pediatric stylized and voxel phantoms submerged in air.
    Dewji SA; Bales K; Griffin K; Lee C; Hiller M
    Phys Med Biol; 2018 Sep; 63(17):175019. PubMed ID: 30051886
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of kilovoltage x-ray and electron beam dose distributions for radiotherapy of the sternum.
    Keall P; Monti di Sopra F; Beckham W; Delaney G
    Med Dosim; 1999; 24(2):141-4. PubMed ID: 10379512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.