These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29091659)

  • 1. Role of location-dependent transverse wind on root-mean-square bandwidth of temporal light-flux fluctuations in the turbulent atmosphere.
    Chen C; Yang H
    J Opt Soc Am A Opt Image Sci Vis; 2017 Nov; 34(11):2070-2076. PubMed ID: 29091659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-frequency coherence and pulse propagation in a turbulent atmosphere.
    Ostashev VE; Wilson DK; Collier SL; Cain JE; Cheinet S
    J Acoust Soc Am; 2016 Jul; 140(1):678. PubMed ID: 27475189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Measurement of path transverse wind velocity profile using light forward scattering scintillation correlation method].
    Yuan KE; Lü WY; Zheng LN; Hu SX; Huang J; Cao KF; Xu ZH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul; 34(7):1780-4. PubMed ID: 25269279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wind velocity profile reconstruction from intensity fluctuations of a plane wave propagating in a turbulent atmosphere.
    Banakh VA; Marakasov DA
    Opt Lett; 2007 Aug; 32(15):2236-8. PubMed ID: 17671595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical anemometry based on the temporal cross-correlation of angle-of-arrival fluctuations obtained from spatially separated light sources.
    Tichkule S; Muschinski A
    Appl Opt; 2012 Jul; 51(21):5272-82. PubMed ID: 22858972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mean-square angle-of-arrival difference between two counter-propagating spherical waves in the presence of atmospheric turbulence.
    Chen C; Yang H; Tong S; Lou Y
    Opt Express; 2015 Sep; 23(19):24657-68. PubMed ID: 26406667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherence function and mean field of plane and spherical sound waves propagating through inhomogeneous anisotropic turbulence.
    Ostashev VE; Wilson DK
    J Acoust Soc Am; 2004 Feb; 115(2):497-506. PubMed ID: 15000162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sound propagation in a turbulent atmosphere near the ground: a parabolic equation approach.
    Ostashev VE; Salomons EM; Clifford SF; Lataitis RJ; Wilson DK; Blanc-Benon P; Juvé D
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):1894-908. PubMed ID: 11386544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atmospheric turbulence-induced fading channel model for space-to-ground laser communications links.
    Toyoshima M; Takenaka H; Takayama Y
    Opt Express; 2011 Aug; 19(17):15965-75. PubMed ID: 21934960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between light-flux fluctuations of two counter-propagating waves in weak atmospheric turbulence.
    Chen C; Yang H
    Opt Express; 2017 May; 25(11):12779-12795. PubMed ID: 28786631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial-temporal coherence of acoustic signals propagating in a refractive, turbulent atmosphere.
    Ostashev VE; Wilson DK; Vecherin SN; Collier SL
    J Acoust Soc Am; 2014 Nov; 136(5):2414-31. PubMed ID: 25373944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde.
    Le PA; Garcés M; Blanc E; Barthélémy M; Drob DP
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 2):629-41. PubMed ID: 11837968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turbulent wind field representation and conditional mean-field simulation.
    Krenk S; Møller RN
    Proc Math Phys Eng Sci; 2019 Mar; 475(2223):20180887. PubMed ID: 31007560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of source spatial partial coherence on temporal fade statistics of irradiance flux in free-space optical links through atmospheric turbulence.
    Chen C; Yang H; Zhou Z; Zhang W; Kavehrad M; Tong S; Wang T
    Opt Express; 2013 Dec; 21(24):29731-43. PubMed ID: 24514524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.
    Zhai X; Wu S; Liu B
    Opt Express; 2017 Jun; 25(12):A515-A529. PubMed ID: 28788882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of wind-driven telescope vibrations on measurements of turbulent angle-of-arrival fluctuations.
    Tichkule S; Muschinski A
    Appl Opt; 2014 Jul; 53(21):4651-60. PubMed ID: 25090200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tomographic reconstruction of atmospheric turbulence with the use of time-dependent stochastic inversion.
    Vecherin SN; Ostashev VE; Ziemann A; Wilson DK; Arnold K; Barth M
    J Acoust Soc Am; 2007 Sep; 122(3):1416. PubMed ID: 17927403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of scintillations to measure average wind across a light beam.
    Lawrence RS; Ochs GR; Clifford SF
    Appl Opt; 1972 Feb; 11(2):239-43. PubMed ID: 20111487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase-correction of turbulent distortions of an optical wave propagating under conditions of strong intensity fluctuations.
    Lukin VP; Fortes BV
    Appl Opt; 2002 Sep; 41(27):5616-24. PubMed ID: 12269560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal-Frequency Spectra for Waves Propagating over Straight and Folded Paths: a Comparison.
    Smith J; Pries TH
    Appl Opt; 1975 May; 14(5):1161-4. PubMed ID: 20154789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.