These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 29091699)
1. Design of diffractive optical elements for subdiffraction spot arrays with high light efficiency. Wu C; Gu H; Zhou Z; Tan Q Appl Opt; 2017 Nov; 56(31):8816-8821. PubMed ID: 29091699 [TBL] [Abstract][Full Text] [Related]
2. Design and demonstration of fan-out elements generating an array of subdiffraction spots. Ogura Y; Aino M; Tanida J Opt Express; 2014 Oct; 22(21):25196-207. PubMed ID: 25401553 [TBL] [Abstract][Full Text] [Related]
3. Diffractive fan-out elements for wavelength-multiplexing subdiffraction-limit spot generation in three dimensions. Ogura Y; Aino M; Tanida J Appl Opt; 2016 Aug; 55(23):6371-80. PubMed ID: 27534481 [TBL] [Abstract][Full Text] [Related]
4. Diffractive phase elements for beam shaping: a new design method. Tan X; Gu BY; Yang GZ; Dong BZ Appl Opt; 1995 Mar; 34(8):1314-20. PubMed ID: 21037662 [TBL] [Abstract][Full Text] [Related]
5. Dynamic iterative correction algorithm for designing diffractive optical elements. Hu C; Zhang J; Jiang S; Sun G J Opt Soc Am A Opt Image Sci Vis; 2024 May; 41(5):757-765. PubMed ID: 38856562 [TBL] [Abstract][Full Text] [Related]
6. Design of a single-mode fiber coupling system based on the modified Gerchberg-Saxton algorithm. Qiao J; Shen J; Jiang P; Caiyang W; Yang H Appl Opt; 2022 Dec; 61(35):10380-10389. PubMed ID: 36607096 [TBL] [Abstract][Full Text] [Related]
7. Iterative algorithm for the design of free-space diffractive optical elements for fiber coupling. Thomson MJ; Liu J; Taghizadeh MR Appl Opt; 2004 Apr; 43(10):1996-9. PubMed ID: 15074404 [TBL] [Abstract][Full Text] [Related]
8. Iterative algorithm for the design of diffractive phase elements for laser beam shaping. Liu JS; Taghizadeh MR Opt Lett; 2002 Aug; 27(16):1463-5. PubMed ID: 18026480 [TBL] [Abstract][Full Text] [Related]
9. Beam shaping of complex amplitude with separate constraints on the output beam. Tao S; Yu W Opt Express; 2015 Jan; 23(2):1052-62. PubMed ID: 25835865 [TBL] [Abstract][Full Text] [Related]
10. Algorithm based on rigorous coupled-wave analysis for diffractive optical element design. Chang NY; Kuo CJ J Opt Soc Am A Opt Image Sci Vis; 2001 Oct; 18(10):2491-501. PubMed ID: 11583266 [TBL] [Abstract][Full Text] [Related]
11. Efficient optimization of diffractive optical elements based on rigorous diffraction models. Testorf ME; Fiddy MA J Opt Soc Am A Opt Image Sci Vis; 2001 Nov; 18(11):2908-14. PubMed ID: 11688881 [TBL] [Abstract][Full Text] [Related]
12. On the use of the supporting quadric method in the problem of the light field eikonal calculation. Doskolovich LL; Moiseev MA; Bezus EA; Oliker V Opt Express; 2015 Jul; 23(15):19605-17. PubMed ID: 26367618 [TBL] [Abstract][Full Text] [Related]
14. Error tracking-control-reduction algorithm for designing diffractive optical element with high image reconstruction quality. Pang Y; Wu X; Pang H; Liu L; Xue L; Liu W; Shi L; Cao A; Deng Q Opt Express; 2020 Mar; 28(7):10090-10103. PubMed ID: 32225602 [TBL] [Abstract][Full Text] [Related]
15. Periodic diffractive optical element for high-density and large-scale spot array structured light projection. Zhao Y; Tan Q Appl Opt; 2023 Nov; 62(31):8279-8285. PubMed ID: 38037930 [TBL] [Abstract][Full Text] [Related]
16. Design of diffractive optical element projector for a pseudorandom dot array by an improved encoding method. Miao Y; Zhao Y; Ma H; Jiang M; Lin J; Jin P Appl Opt; 2019 Dec; 58(34):G169-G176. PubMed ID: 31873500 [TBL] [Abstract][Full Text] [Related]