These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 29091819)
1. Prediction of aquatic toxicity of benzene derivatives using molecular descriptor from atomic weighted vectors. Martínez-López Y; Barigye SJ; Martínez-Santiago O; Marrero-Ponce Y; Green J; Castillo-Garit JA Environ Toxicol Pharmacol; 2017 Dec; 56():314-321. PubMed ID: 29091819 [TBL] [Abstract][Full Text] [Related]
2. Prediction of Aquatic Toxicity of Benzene Derivatives to Tetrahymena pyriformis According to OECD Principles. Castillo-Garit JA; Abad C; Casañola-Martin GM; Barigye SJ; Torrens F; Torreblanca A Curr Pharm Des; 2016; 22(33):5085-5094. PubMed ID: 27568732 [TBL] [Abstract][Full Text] [Related]
3. QSAR Models for Predicting Aquatic Toxicity of Esters Using Genetic Algorithm-Multiple Linear Regression Methods. Rajabi M; Shafiei F Comb Chem High Throughput Screen; 2019 Aug; 22(5):317-325. PubMed ID: 31215375 [TBL] [Abstract][Full Text] [Related]
4. Building up a QSAR model for toxicity toward Tetrahymena pyriformis by the Monte Carlo method: A case of benzene derivatives. Toropova AP; Schultz TW; Toropov AA Environ Toxicol Pharmacol; 2016 Mar; 42():135-45. PubMed ID: 26851376 [TBL] [Abstract][Full Text] [Related]
5. Prediction of aquatic toxicity: use of optimization of correlation weights of local graph invariants. Toropov AA; Schultz TW J Chem Inf Comput Sci; 2003; 43(2):560-7. PubMed ID: 12653522 [TBL] [Abstract][Full Text] [Related]
6. Comparative structure-toxicity relationship study of substituted benzenes to Tetrahymena pyriformis using shuffling-adaptive neuro fuzzy inference system and artificial neural networks. Jalali-Heravi M; Kyani A Chemosphere; 2008 Jun; 72(5):733-40. PubMed ID: 18499226 [TBL] [Abstract][Full Text] [Related]
7. Bee algorithm and adaptive neuro-fuzzy inference system as tools for QSAR study toxicity of substituted benzenes to Tetrahymena pyriformis. Zarei K; Atabati M; Kor K Bull Environ Contam Toxicol; 2014 Jun; 92(6):642-9. PubMed ID: 24638918 [TBL] [Abstract][Full Text] [Related]
8. Prediction of the aquatic toxicity of aromatic compounds to tetrahymena pyriformis through support vector regression. Su Q; Lu W; Du D; Chen F; Niu B; Chou KC Oncotarget; 2017 Jul; 8(30):49359-49369. PubMed ID: 28467816 [TBL] [Abstract][Full Text] [Related]
9. Application of random forest approach to QSAR prediction of aquatic toxicity. Polishchuk PG; Muratov EN; Artemenko AG; Kolumbin OG; Muratov NN; Kuz'min VE J Chem Inf Model; 2009 Nov; 49(11):2481-8. PubMed ID: 19860412 [TBL] [Abstract][Full Text] [Related]
10. QSARs for the aquatic toxicity of aromatic aldehydes from Tetrahymena data. Netzeva TI; Schultz TW Chemosphere; 2005 Dec; 61(11):1632-43. PubMed ID: 15950260 [TBL] [Abstract][Full Text] [Related]
11. Regression comparisons of aquatic toxicity of benzene derivatives: Tetrahymena pyriformis and Rana japonica. Gagliardi SR; Schultz TW Bull Environ Contam Toxicol; 2005 Feb; 74(2):256-62. PubMed ID: 15841965 [No Abstract] [Full Text] [Related]
12. In silico prediction of toxicity of phenols to Tetrahymena pyriformis by using genetic algorithm and decision tree-based modeling approach. Abbasitabar F; Zare-Shahabadi V Chemosphere; 2017 Apr; 172():249-259. PubMed ID: 28081509 [TBL] [Abstract][Full Text] [Related]
13. Predicting acute toxicity (LC50) of benzene derivatives using theoretical molecular descriptors: a hierarchical QSAR approach. Gute BD; Basak SC SAR QSAR Environ Res; 1997; 7(1-4):117-31. PubMed ID: 9501507 [TBL] [Abstract][Full Text] [Related]
14. Development of reliable quantitative structure-toxicity relationship models for toxicity prediction of benzene derivatives using semiempirical descriptors. Singh A; Kumar S; Kapoor A; Kumar P; Kumar A Toxicol Mech Methods; 2023 Mar; 33(3):222-232. PubMed ID: 36042574 [TBL] [Abstract][Full Text] [Related]
15. Reactivity-based toxicity modelling of five-membered heterocyclic compounds: application to Tetrahymena pyriformis. Schultz TW; Sparfkin CL; Aptula AO SAR QSAR Environ Res; 2010 Oct; 21(7-8):681-91. PubMed ID: 21120756 [TBL] [Abstract][Full Text] [Related]
16. Prediction of chemical toxicity to Tetrahymena pyriformis with four-descriptor models. Yu X Ecotoxicol Environ Saf; 2020 Mar; 190():110146. PubMed ID: 31923753 [TBL] [Abstract][Full Text] [Related]
17. QSTR with extended topochemical atom (ETA) indices. 12. QSAR for the toxicity of diverse aromatic compounds to Tetrahymena pyriformis using chemometric tools. Roy K; Ghosh G Chemosphere; 2009 Nov; 77(7):999-1009. PubMed ID: 19709717 [TBL] [Abstract][Full Text] [Related]
18. When global and local molecular descriptors are more than the sum of its parts: Simple, But Not Simpler? Martínez-López Y; Marrero-Ponce Y; Barigye SJ; Teran E; Martínez-Santiago O; Zambrano CH; Torres FJ Mol Divers; 2020 Nov; 24(4):913-932. PubMed ID: 31659696 [TBL] [Abstract][Full Text] [Related]
19. Prediction of acute toxicity of phenol derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database. Dieguez-Santana K; Pham-The H; Villegas-Aguilar PJ; Le-Thi-Thu H; Castillo-Garit JA; Casañola-Martin GM Chemosphere; 2016 Dec; 165():434-441. PubMed ID: 27668720 [TBL] [Abstract][Full Text] [Related]
20. Application of a computational model for Michael addition reactivity in the prediction of toxicity to Tetrahymena pyriformis. Schwöbel JA; Madden JC; Cronin MT Chemosphere; 2011 Oct; 85(6):1066-74. PubMed ID: 21890172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]