BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29091924)

  • 21. The Aerodynamics and Power Requirements of Forward Flapping Flight in the Mango Stem Borer Beetle (
    Urca T; Debnath AK; Stefanini J; Gurka R; Ribak G
    Integr Org Biol; 2020; 2(1):obaa026. PubMed ID: 33796817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Forward flight of swallowtail butterfly with simple flapping motion.
    Tanaka H; Shimoyama I
    Bioinspir Biomim; 2010 Jun; 5(2):026003. PubMed ID: 20484782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinematics and aerodynamics of avian upstrokes during slow flight.
    Crandell KE; Tobalske BW
    J Exp Biol; 2015 Aug; 218(Pt 16):2518-27. PubMed ID: 26089528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system.
    Truong QT; Nguyen QV; Truong VT; Park HC; Byun DY; Goo NS
    Bioinspir Biomim; 2011 Sep; 6(3):036008. PubMed ID: 21865627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes.
    Park H; Choi H
    Bioinspir Biomim; 2012 Mar; 7(1):016008. PubMed ID: 22278952
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
    Phillips N; Knowles K; Bomphrey RJ
    Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flight Capacity of the Walnut Twig Beetle (Coleoptera: Scolytidae) on a Laboratory Flight Mill.
    Kees AM; Hefty AR; Venette RC; Seybold SJ; Aukema BH
    Environ Entomol; 2017 Jun; 46(3):633-641. PubMed ID: 28334300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The function of pitching in Beetle's flight revealed by insect-wearable backpack.
    Fu F; Li Y; Wang H; Li B; Sato H
    Biosens Bioelectron; 2022 Feb; 198():113818. PubMed ID: 34861525
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lift vs. drag based mechanisms for vertical force production in the smallest flying insects.
    Jones SK; Laurenza R; Hedrick TL; Griffith BE; Miller LA
    J Theor Biol; 2015 Nov; 384():105-20. PubMed ID: 26300066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Simple Flight Mill for the Study of Tethered Flight in Insects.
    Attisano A; Murphy JT; Vickers A; Moore PJ
    J Vis Exp; 2015 Dec; (106):e53377. PubMed ID: 26709537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous measurement of aerodynamic forces and kinematics in flapping wings of tethered locust.
    Shkarayev S; Kumar R
    Bioinspir Biomim; 2015 Oct; 10(6):066003. PubMed ID: 26496206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Whiteflies stabilize their take-off with closed wings.
    Ribak G; Dafni E; Gerling D
    J Exp Biol; 2016 Jun; 219(Pt 11):1639-48. PubMed ID: 27045098
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hovering of model insects: simulation by coupling equations of motion with Navier-Stokes equations.
    Wu JH; Zhang YL; Sun M
    J Exp Biol; 2009 Oct; 212(Pt 20):3313-29. PubMed ID: 19801436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of a Computerised Flight Mill Device to Measure the Flight Potential of Different Insects.
    Martí-Campoy A; Ávalos JA; Soto A; Rodríguez-Ballester F; Martínez-Blay V; Malumbres MP
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27070600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Body saccades of Drosophila consist of stereotyped banked turns.
    Muijres FT; Elzinga MJ; Iwasaki NA; Dickinson MH
    J Exp Biol; 2015 Mar; 218(Pt 6):864-75. PubMed ID: 25657212
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wing flexibility improves bumblebee flight stability.
    Mistick EA; Mountcastle AM; Combes SA
    J Exp Biol; 2016 Nov; 219(Pt 21):3384-3390. PubMed ID: 27638618
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns.
    Ros IG; Badger MA; Pierson AN; Bassman LC; Biewener AA
    J Exp Biol; 2015 Feb; 218(Pt 3):480-90. PubMed ID: 25452503
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced thrust and speed revealed in the forward flight of a butterfly with transient body translation.
    Fei YH; Yang JT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033004. PubMed ID: 26465553
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between aerodynamics and a torsional spring.
    Beatus T; Cohen I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022712. PubMed ID: 26382437
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of body aerodynamics on the dynamic flight stability of the hawkmoth Manduca sexta.
    Nguyen AT; Han JS; Han JH
    Bioinspir Biomim; 2016 Dec; 12(1):016007. PubMed ID: 27966467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.