These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29091924)

  • 41. Effect of body aerodynamics on the dynamic flight stability of the hawkmoth Manduca sexta.
    Nguyen AT; Han JS; Han JH
    Bioinspir Biomim; 2016 Dec; 12(1):016007. PubMed ID: 27966467
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A two-dimensional aerodynamic model of freely flying insects.
    Iima M
    J Theor Biol; 2007 Aug; 247(4):657-71. PubMed ID: 17482214
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Animal flight dynamics II. Longitudinal stability in flapping flight.
    Taylor GK; Thomas AL
    J Theor Biol; 2002 Feb; 214(3):351-70. PubMed ID: 11846595
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wings.
    Xiao Q; Hu J; Liu H
    Bioinspir Biomim; 2014 Mar; 9(1):016008. PubMed ID: 24434625
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Feedback Control-Based Navigation of a Flying Insect-Machine Hybrid Robot.
    Li Y; Wu J; Sato H
    Soft Robot; 2018 Aug; 5(4):365-374. PubMed ID: 29722607
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.
    Sridhar M; Kang CK
    Bioinspir Biomim; 2015 May; 10(3):036007. PubMed ID: 25946079
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evolution, types, and distribution of flight control devices on wings and elytra in bark beetles.
    Białkowski J; Rossa R; Ziemiakowicz A; Gohli J; Dymek J; Goczał J
    Sci Rep; 2024 Mar; 14(1):6999. PubMed ID: 38523182
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pigeons steer like helicopters and generate down- and upstroke lift during low speed turns.
    Ros IG; Bassman LC; Badger MA; Pierson AN; Biewener AA
    Proc Natl Acad Sci U S A; 2011 Dec; 108(50):19990-5. PubMed ID: 22123982
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Flapping tail membrane in bats produces potentially important thrust during horizontal takeoffs and very slow flight.
    Adams RA; Snode ER; Shaw JB
    PLoS One; 2012; 7(2):e32074. PubMed ID: 22393378
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lift enhancement by bats' dynamically changing wingspan.
    Wang S; Zhang X; He G; Liu T
    J R Soc Interface; 2015 Dec; 12(113):20150821. PubMed ID: 26701882
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Wing motion transformation to evaluate aerodynamic coupling in flapping wing flight.
    Faruque IA; Humbert JS
    J Theor Biol; 2014 Dec; 363():198-204. PubMed ID: 25128237
    [TBL] [Abstract][Full Text] [Related]  

  • 53. How Far Can Rhynchophorus palmarum (Coleoptera: Curculionidae) Fly?
    Hoddle MS; Hoddle CD; Milosavljević I
    J Econ Entomol; 2020 Aug; 113(4):1786-1795. PubMed ID: 32510131
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Downstroke and upstroke conflict during banked turns in butterflies.
    Henningsson P; Johansson LC
    J R Soc Interface; 2021 Dec; 18(185):20210779. PubMed ID: 34847788
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Quasi-Steady Lifting Line Theory for Insect-Like Hovering Flight.
    Nabawy MR; Crowthe WJ
    PLoS One; 2015; 10(8):e0134972. PubMed ID: 26252657
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Importance of body rotation during the flight of a butterfly.
    Fei YH; Yang JT
    Phys Rev E; 2016 Mar; 93(3):033124. PubMed ID: 27078464
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Flight Capacities and Diurnal Flight Patterns of the Ambrosia Beetles, Xyleborus glabratus and Monarthrum mali (Coleoptera: Curculionidae).
    Seo M; Martini X; Rivera MJ; Stelinski LL
    Environ Entomol; 2017 Jun; 46(3):729-734. PubMed ID: 28459955
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect.
    Van Truong T; Byun D; Kim MJ; Yoon KJ; Park HC
    Bioinspir Biomim; 2013 Sep; 8(3):036007. PubMed ID: 23851351
    [TBL] [Abstract][Full Text] [Related]  

  • 60. On mathematical modelling of insect flight dynamics in the context of micro air vehicles.
    Zbikowski R; Ansari SA; Knowles K
    Bioinspir Biomim; 2006 Jun; 1(2):R26-37. PubMed ID: 17671303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.