These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29091924)

  • 61. Loaded flight in male Ischnura elegans and its relationship to copulatory flight.
    Davidovich H; Ribak G
    J Insect Physiol; 2018 Oct; 110():44-56. PubMed ID: 30176246
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings.
    Maybury WJ; Lehmann FO
    J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Wing shape optimization design inspired by beetle hindwings in wind tunnel experiments.
    Liu C; Li P; Song F; Sun J
    Comput Biol Med; 2021 Aug; 135():104642. PubMed ID: 34284264
    [TBL] [Abstract][Full Text] [Related]  

  • 64. High speed visual insect swarm tracker (Hi-VISTA) used to identify the effects of confinement on individual insect flight.
    Ahmed I; Faruque IA
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35439741
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hovering flight in the honeybee Apis mellifera: kinematic mechanisms for varying aerodynamic forces.
    Vance JT; Altshuler DL; Dickson WB; Dickinson MH; Roberts SP
    Physiol Biochem Zool; 2014; 87(6):870-81. PubMed ID: 25461650
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Aero-optimum hovering kinematics.
    Nabawy MR; Crowther WJ
    Bioinspir Biomim; 2015 Aug; 10(4):044002. PubMed ID: 26248884
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Surface tension dominates insect flight on fluid interfaces.
    Mukundarajan H; Bardon TC; Kim DH; Prakash M
    J Exp Biol; 2016 Mar; 219(Pt 5):752-66. PubMed ID: 26936640
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Folding in and out: passive morphing in flapping wings.
    Stowers AK; Lentink D
    Bioinspir Biomim; 2015 Mar; 10(2):025001. PubMed ID: 25807583
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bat flight: aerodynamics, kinematics and flight morphology.
    Hedenström A; Johansson LC
    J Exp Biol; 2015 Mar; 218(Pt 5):653-63. PubMed ID: 25740899
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.
    Klaassen van Oorschot B; Mistick EA; Tobalske BW
    J Exp Biol; 2016 Oct; 219(Pt 19):3146-3154. PubMed ID: 27473437
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Assessing Flight Potential of the Invasive Asian Longhorned Beetle (Coleoptera: Cerambycidae) With Computerized Flight Mills.
    Lopez VM; Hoddle MS; Francese JA; Lance DR; Ray AM
    J Econ Entomol; 2017 Jun; 110(3):1070-1077. PubMed ID: 28419382
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bilateral flight muscle activity predicts wing kinematics and 3-dimensional body orientation of locusts responding to looming objects.
    McMillan GA; Loessin V; Gray JR
    J Exp Biol; 2013 Sep; 216(Pt 17):3369-80. PubMed ID: 23737560
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Speed control and force-vectoring of bluebottle flies in a magnetically levitated flight mill.
    Hsu SJ; Thakur N; Cheng B
    J Exp Biol; 2019 Feb; 222(Pt 4):. PubMed ID: 30578375
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Inflected wings in flight: Uniform flow of stresses makes strong and light wings for stable flight.
    Mardanpour P; Izadpanahi E; Powell S; Rastkar S; Bejan A
    J Theor Biol; 2021 Jan; 508():110452. PubMed ID: 32828843
    [TBL] [Abstract][Full Text] [Related]  

  • 75. On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles.
    Zbikowski R
    Philos Trans A Math Phys Eng Sci; 2002 Feb; 360(1791):273-90. PubMed ID: 16210181
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Remote radio control of insect flight reveals why beetles lift their legs in flight while other insects tightly fold.
    Kosaka T; Gan JH; Long LD; Umezu S; Sato H
    Bioinspir Biomim; 2021 Mar; 16(3):. PubMed ID: 33513597
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Role of wing pronation in evasive steering of locusts.
    Ribak G; Rand D; Weihs D; Ayali A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Jul; 198(7):541-55. PubMed ID: 22547148
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Wing damage affects flight kinematics but not flower tracking performance in hummingbird hawkmoths.
    Kihlström K; Aiello B; Warrant E; Sponberg S; Stöckl A
    J Exp Biol; 2021 Feb; 224(Pt 4):. PubMed ID: 33504584
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Quantifying interspecific variation in dispersal ability of noctuid moths using an advanced tethered flight technique.
    Jones HB; Lim KS; Bell JR; Hill JK; Chapman JW
    Ecol Evol; 2016 Jan; 6(1):181-90. PubMed ID: 26811783
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Extraordinary flight performance of the smallest beetles.
    Farisenkov SE; Lapina NA; Petrov PN; Polilov AA
    Proc Natl Acad Sci U S A; 2020 Oct; 117(40):24643-24645. PubMed ID: 32958659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.