BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29091999)

  • 1. Evaluation and comparison of methods for recapitulation of 3D spatial chromatin structures.
    Park J; Lin S
    Brief Bioinform; 2019 Jul; 20(4):1205-1214. PubMed ID: 29091999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructing spatial organizations of chromosomes through manifold learning.
    Zhu G; Deng W; Hu H; Ma R; Zhang S; Yang J; Peng J; Kaplan T; Zeng J
    Nucleic Acids Res; 2018 May; 46(8):e50. PubMed ID: 29408992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture.
    Di Pierro M; Cheng RR; Lieberman Aiden E; Wolynes PG; Onuchic JN
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12126-12131. PubMed ID: 29087948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of data resolution on three-dimensional structure inference methods.
    Park J; Lin S
    BMC Bioinformatics; 2016 Feb; 17():70. PubMed ID: 26852142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.
    Szałaj P; Tang Z; Michalski P; Pietal MJ; Luo OJ; Sadowski M; Li X; Radew K; Ruan Y; Plewczynski D
    Genome Res; 2016 Dec; 26(12):1697-1709. PubMed ID: 27789526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D genome structure modeling by Lorentzian objective function.
    Trieu T; Cheng J
    Nucleic Acids Res; 2017 Feb; 45(3):1049-1058. PubMed ID: 28180292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization.
    Tjong H; Li W; Kalhor R; Dai C; Hao S; Gong K; Zhou Y; Li H; Zhou XJ; Le Gros MA; Larabell CA; Chen L; Alber F
    Proc Natl Acad Sci U S A; 2016 Mar; 113(12):E1663-72. PubMed ID: 26951677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale 3D chromatin reconstruction from chromosomal contacts.
    Zhang Y; Liu W; Lin Y; Ng YK; Li S
    BMC Genomics; 2019 Apr; 20(Suppl 2):186. PubMed ID: 30967119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing stationary distributions derived from chromatin contact maps.
    Segal MR; Fletez-Brant K
    BMC Bioinformatics; 2020 Feb; 21(1):73. PubMed ID: 32093610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin 3D Reconstruction from Chromosomal Contacts Using a Genetic Algorithm.
    Kapilevich V; Seno S; Matsuda H; Takenaka Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1620-1626. PubMed ID: 29994156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin 3D structure reconstruction with consideration of adjacency relationship among genomic loci.
    Li FZ; Liu ZE; Li XY; Bu LM; Bu HX; Liu H; Zhang CM
    BMC Bioinformatics; 2020 Jul; 21(1):272. PubMed ID: 32611376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reorganization of chromosome architecture in replicative cellular senescence.
    Criscione SW; De Cecco M; Siranosian B; Zhang Y; Kreiling JA; Sedivy JM; Neretti N
    Sci Adv; 2016 Feb; 2(2):e1500882. PubMed ID: 26989773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ChromoTrace: Computational reconstruction of 3D chromosome configurations for super-resolution microscopy.
    Barton C; Morganella S; Ødegård-Fougner Ø; Alexander S; Ries J; Fitzgerald T; Ellenberg J; Birney E
    PLoS Comput Biol; 2018 Mar; 14(3):e1006002. PubMed ID: 29522506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mining 3D genome structure populations identifies major factors governing the stability of regulatory communities.
    Dai C; Li W; Tjong H; Hao S; Zhou Y; Li Q; Chen L; Zhu B; Alber F; Jasmine Zhou X
    Nat Commun; 2016 May; 7():11549. PubMed ID: 27240697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Identification of Genomic Features That Influence 3D Chromatin Domain Formation.
    Mourad R; Cuvier O
    PLoS Comput Biol; 2016 May; 12(5):e1004908. PubMed ID: 27203237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing novel methods to image and visualize 3D genomes.
    Ma T; Chen L; Shi M; Niu J; Zhang X; Yang X; Zhanghao K; Wang M; Xi P; Jin D; Zhang M; Gao J
    Cell Biol Toxicol; 2018 Oct; 34(5):367-380. PubMed ID: 29577183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-contact 3C reveals that the human genome during interphase is largely not entangled.
    Tavares-Cadete F; Norouzi D; Dekker B; Liu Y; Dekker J
    Nat Struct Mol Biol; 2020 Dec; 27(12):1105-1114. PubMed ID: 32929283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors.
    Serra F; Baù D; Goodstadt M; Castillo D; Filion GJ; Marti-Renom MA
    PLoS Comput Biol; 2017 Jul; 13(7):e1005665. PubMed ID: 28723903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.