BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29092159)

  • 1. Surface-enhanced infrared absorption with Si-doped InAsSb/GaSb nano-antennas.
    Milla MJ; Barho F; González-Posada F; Cerutti L; Charlot B; Bomers M; Neubrech F; Tournie E; Taliercio T
    Opt Express; 2017 Oct; 25(22):26651-26661. PubMed ID: 29092159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized surface plasmon resonance frequency tuning in highly doped InAsSb/GaSb one-dimensional nanostructures.
    Milla MJ; Barho F; González-Posada F; Cerutti L; Bomers M; Rodriguez JB; Tournié E; Taliercio T
    Nanotechnology; 2016 Oct; 27(42):425201. PubMed ID: 27608135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fano-like resonances sustained by Si doped InAsSb plasmonic resonators integrated in GaSb matrix.
    Taliercio T; Guilengui VN; Cerutti L; Rodriguez JB; Barho F; Rodrigo MJ; Gonzalez-Posada F; Tournié E; Niehle M; Trampert A
    Opt Express; 2015 Nov; 23(23):29423-33. PubMed ID: 26698426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates.
    Baldassarre L; Sakat E; Frigerio J; Samarelli A; Gallacher K; Calandrini E; Isella G; Paul DJ; Ortolani M; Biagioni P
    Nano Lett; 2015 Nov; 15(11):7225-31. PubMed ID: 26457387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiative Enhancement of Linear and Third-Order Vibrational Excitations by an Array of Infrared Plasmonic Antennas.
    Gandman A; Mackin RT; Cohn B; Rubtsov IV; Chuntonov L
    ACS Nano; 2018 May; 12(5):4521-4528. PubMed ID: 29727565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range.
    Barho FB; Gonzalez-Posada F; Milla-Rodrigo MJ; Bomers M; Cerutti L; Taliercio T
    Opt Express; 2016 Jul; 24(14):16175-90. PubMed ID: 27410884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Enhanced Infrared Absorption Using Single Conducting Polymer Antennas.
    Li X; Zhu S; Zhu G; Wang J; Ding Y; Du W; Wang T
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):14357-14363. PubMed ID: 38440977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. THz time-domain spectroscopy modulated with semiconductor plasmonic perfect absorbers.
    Gonzalez-Posada F; Coquillat D; Najem M; Cerutti L; Taliercio T
    Opt Express; 2023 Sep; 31(20):32152-32161. PubMed ID: 37859024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Vertically Coupled Complementary Antennas for Dual-Mode Infrared Molecule Sensing.
    Chen X; Wang C; Yao Y; Wang C
    ACS Nano; 2017 Aug; 11(8):8034-8046. PubMed ID: 28693314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mid-Infrared Gas Sensing Based on Electromagnetically Induced Transparency in Coupled Plasmonic Resonators.
    Shafaay S; Mohamed S; Swillam M
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ge(Sn) nano-island/Si heterostructure photodetectors with plasmonic antennas.
    Schlykow V; Manganelli CL; Römer F; Clausen C; Augel L; Schulze J; Katzer J; Schubert MA; Witzigmann B; Schroeder T; Capellini G; Fischer IA
    Nanotechnology; 2020 Aug; 31(34):345203. PubMed ID: 32392549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. More electromagnetic energy converged by the assembly of magnetic resonator and antennas.
    Hou Y
    Nanoscale; 2012 Feb; 4(3):874-8. PubMed ID: 22187002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling of light from microdisk lasers into plasmonic nano-antennas.
    Hattori HT; Li Z; Liu D; Rukhlenko ID; Premaratne M
    Opt Express; 2009 Nov; 17(23):20878-84. PubMed ID: 19997324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mid- and far-infrared localized surface plasmon resonances in chalcogen-hyperdoped silicon.
    Wang M; Yu Y; Prucnal S; Berencén Y; Shaikh MS; Rebohle L; Khan MB; Zviagin V; Hübner R; Pashkin A; Erbe A; Georgiev YM; Grundmann M; Helm M; Kirchner R; Zhou S
    Nanoscale; 2022 Feb; 14(7):2826-2836. PubMed ID: 35133384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct measurement of the effective infrared dielectric response of a highly doped semiconductor metamaterial.
    Al Mohtar A; Kazan M; Taliercio T; Cerutti L; Blaize S; Bruyant A
    Nanotechnology; 2017 Mar; 28(12):125701. PubMed ID: 28151723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-Dimensional Infrared Spectroscopy with Local Plasmonic Fields of a Trimer Gap-Antenna Array.
    Cohn B; Engelman B; Goldner A; Chuntonov L
    J Phys Chem Lett; 2018 Aug; 9(16):4596-4601. PubMed ID: 30044640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CMOS-Compatible Antimony-Doped Germanium Epilayers for Mid-Infrared Low-Loss High-Plasma-Frequency Plasmonics.
    Chong H; Xu Z; Wang Z; Yu J; Biesner T; Dressel M; Wu L; Li Q; Ye H
    ACS Appl Mater Interfaces; 2019 May; 11(21):19647-19653. PubMed ID: 31055915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators.
    Berrier A; Albella P; Poyli MA; Ulbricht R; Bonn M; Aizpurua J; Rivas JG
    Opt Express; 2012 Feb; 20(5):5052-60. PubMed ID: 22418310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-plasmonic Bundt Optenna for broadband polarization-insensitive and enhanced infrared detection.
    Awad E
    Sci Rep; 2019 Aug; 9(1):12197. PubMed ID: 31434970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communication: Probing the interaction of infrared antenna arrays and molecular films with ultrafast quantum dynamics.
    Cohn B; Prasad AK; Chuntonov L
    J Chem Phys; 2018 Apr; 148(13):131101. PubMed ID: 29626913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.