These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29092159)

  • 21. Communication: Probing the interaction of infrared antenna arrays and molecular films with ultrafast quantum dynamics.
    Cohn B; Prasad AK; Chuntonov L
    J Chem Phys; 2018 Apr; 148(13):131101. PubMed ID: 29626913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial extent of plasmonic enhancement of vibrational signals in the infrared.
    Neubrech F; Beck S; Glaser T; Hentschel M; Giessen H; Pucci A
    ACS Nano; 2014 Jun; 8(6):6250-8. PubMed ID: 24811345
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface-enhanced ultrafast two-dimensional vibrational spectroscopy with engineered plasmonic nano-antennas.
    Chuntonov L; Rubtsov IV
    J Chem Phys; 2020 Aug; 153(5):050902. PubMed ID: 32770907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method.
    Kaniber M; Schraml K; Regler A; Bartl J; Glashagen G; Flassig F; Wierzbowski J; Finley JJ
    Sci Rep; 2016 Mar; 6():23203. PubMed ID: 27005986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals.
    Zhou S; Pi X; Ni Z; Ding Y; Jiang Y; Jin C; Delerue C; Yang D; Nozaki T
    ACS Nano; 2015 Jan; 9(1):378-86. PubMed ID: 25551330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Boosting infrared energy transfer in 3D nanoporous gold antennas.
    Garoli D; Calandrini E; Bozzola A; Ortolani M; Cattarin S; Barison S; Toma A; De Angelis F
    Nanoscale; 2017 Jan; 9(2):915-922. PubMed ID: 28000833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices.
    Moon K; Lee IM; Shin JH; Lee ES; Kim N; Lee WH; Ko H; Han SP; Park KH
    Sci Rep; 2015 Sep; 5():13817. PubMed ID: 26347288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of suspended metal-dielectric-metal plasmonic nanostructures.
    Dong Z; Bosman M; Zhu D; Goh XM; Yang JK
    Nanotechnology; 2014 Apr; 25(13):135303. PubMed ID: 24598115
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array.
    Chen CK; Chang MH; Wu HT; Lee YC; Yen TJ
    Biosens Bioelectron; 2014 Oct; 60():343-50. PubMed ID: 24836017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials.
    Cheng F; Yang X; Gao J
    Sci Rep; 2015 Sep; 5():14327. PubMed ID: 26388404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arrays of recycled power TM polarized nano-antennas.
    Hattori HT; Li Z
    Opt Express; 2013 Jul; 21(14):16273-81. PubMed ID: 23938478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sub-diffractional waveguiding by mid-infrared plasmonic resonators in semiconductor nanowires.
    Tervo EJ; Boyuk DS; Cola BA; Zhang ZM; Filler MA
    Nanoscale; 2018 Mar; 10(12):5708-5716. PubMed ID: 29537041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantifying the Limits of Detection of Surface-Enhanced Infrared Spectroscopy with Grating Order-Coupled Nanogap Antennas.
    John-Herpin A; Tittl A; Altug H
    ACS Photonics; 2018 Oct; 5(10):4117-4124. PubMed ID: 30828588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual-band in situ molecular spectroscopy using single-sized Al-disk perfect absorbers.
    Dao TD; Chen K; Nagao T
    Nanoscale; 2019 May; 11(19):9508-9517. PubMed ID: 31049510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fano Metamaterials on Nanopedestals for Plasmon-Enhanced Infrared Spectroscopy.
    Jung Y; Hwang I; Yu J; Lee J; Choi JH; Jeong JH; Jung JY; Lee J
    Sci Rep; 2019 May; 9(1):7834. PubMed ID: 31127173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. n-type Ge/Si antennas for THz sensing.
    Chavarin CA; Hardt E; Gruessing S; Skibitzki O; Costina I; Spirito D; Seifert W; Klesse W; Manganelli CL; You C; Flesch J; Piehler J; Missori M; Baldassarre L; Witzigmann B; Capellini G
    Opt Express; 2021 Mar; 29(5):7680-7689. PubMed ID: 33726264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmonic coupling with most of the transition metals: a new family of broad band and near infrared nanoantennas.
    Manchon D; Lermé J; Zhang T; Mosset A; Jamois C; Bonnet C; Rye JM; Belarouci A; Broyer M; Pellarin M; Cottancin E
    Nanoscale; 2015 Jan; 7(3):1181-92. PubMed ID: 25488835
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Light emission rate enhancement from InP MQW by plasmon nano-antenna arrays.
    Arbel D; Berkovitch N; Nevet A; Peer A; Cohen S; Ritter D; Orenstein M
    Opt Express; 2011 May; 19(10):9807-13. PubMed ID: 21643237
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging.
    Kühner L; Hentschel M; Zschieschang U; Klauk H; Vogt J; Huck C; Giessen H; Neubrech F
    ACS Sens; 2017 May; 2(5):655-662. PubMed ID: 28723169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Schottky-contact plasmonic dipole rectenna concept for biosensing.
    Alavirad M; Mousavi SS; Roy L; Berini P
    Opt Express; 2013 Feb; 21(4):4328-47. PubMed ID: 23481966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.