These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29092185)

  • 1. High-precision thermal-insensitive strain sensor based on optoelectronic oscillator.
    Fan Z; Su J; Zhang T; Yang N; Qiu Q
    Opt Express; 2017 Oct; 25(22):27037-27050. PubMed ID: 29092185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Precision Temperature Insensitive Strain Sensor Based on Fiber-Optic Delay.
    Yang N; Su J; Fan Z; Qiu Q
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28468323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-precision strain-insensitive temperature sensor based on an optoelectronic oscillator.
    Feng D; Kai L; Zhu T; Gao Y; Gao L; Zhang J
    Opt Express; 2019 Dec; 27(26):37532-37540. PubMed ID: 31878532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-range, high-precision absolute distance measurement based on two optoelectronic oscillators.
    Wang J; Yu J; Miao W; Sun B; Jia S; Wang W; Wu Q
    Opt Lett; 2014 Aug; 39(15):4412-5. PubMed ID: 25078190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High sensitivity axial strain and temperature sensor based on dual-frequency optoelectronic oscillator using PMFBG Fabry-Perot filter.
    Yin B; Wang M; Wu S; Tang Y; Feng S; Zhang H
    Opt Express; 2017 Jun; 25(13):14106-14113. PubMed ID: 28788996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical fiber strain sensor with high precision and extended dynamic range based on a coupled optoelectronic oscillator.
    Feng D; Tang Y; Gao Y; Deng M
    Opt Express; 2023 Feb; 31(5):8927-8936. PubMed ID: 36859997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distributed MIMO chaotic radar based on wavelength-division multiplexing technology.
    Yao T; Zhu D; Ben D; Pan S
    Opt Lett; 2015 Apr; 40(8):1631-4. PubMed ID: 25872034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-sensitivity optical fiber temperature sensor based on a dual-loop optoelectronic oscillator with the Vernier effect.
    Cheng Y; Wang Y; Song Z; Lei J
    Opt Express; 2020 Nov; 28(23):35264-35271. PubMed ID: 33182976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination between strain and temperature by cascading single-mode thin-core diameter fibers.
    Shi J; Xiao S; Bi M; Yi L; Yang P
    Appl Opt; 2012 May; 51(14):2733-8. PubMed ID: 22614497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature- and strain-insensitive curvature sensor based on ring-core modes in dual-concentric-core fiber.
    Wu Z; Shum PP; Shao X; Zhang H; Zhang N; Huang T; Humbert G; Auguste JL; Gérome F; Blondy JM; Dinh XQ
    Opt Lett; 2016 Jan; 41(2):380-3. PubMed ID: 26766719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-range, high-precision, and high-speed absolute distance measurement based on alternately oscillating optoelectronic oscillators.
    Xie T; Wang J; Wang Z; Ma C; Yu Y; Zhu J; Yu J
    Opt Express; 2019 Jul; 27(15):21635-21645. PubMed ID: 31510236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid wavelength- and frequency-division multiplexed fiber laser sensor array.
    Liu S; Dong X; Yu X; Chen X; Tian C
    Opt Lett; 2017 Jan; 42(1):159-162. PubMed ID: 28059203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency domain phase noise analysis of dual injection-locked optoelectronic oscillators.
    Jahanbakht S
    Appl Opt; 2016 Oct; 55(28):7900-7910. PubMed ID: 27828022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature sensor.
    Li X; Sun Q; Liu D; Liang R; Zhang J; Wo J; Shum PP; Liu D
    Opt Express; 2012 May; 20(11):12076-84. PubMed ID: 22714194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous measurement of strain and temperature by two peanut tapers with embedded fiber Bragg grating.
    Lv L; Wang S; Jiang L; Zhang F; Cao Z; Wang P; Jiang Y; Lu Y
    Appl Opt; 2015 Dec; 54(36):10678-83. PubMed ID: 26837035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous strain and temperature measurement by cascading few-mode fiber and single-mode fiber long-period fiber gratings.
    Wang L; Zhang W; Wang B; Chen L; Bai Z; Gao S; Li J; Liu Y; Zhang L; Zhou Q; Yan T
    Appl Opt; 2014 Oct; 53(30):7045-9. PubMed ID: 25402793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity enhanced strain and temperature measurements based on FBG and frequency chirp magnification.
    Du J; He Z
    Opt Express; 2013 Nov; 21(22):27111-8. PubMed ID: 24216935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain sensor based on a pair of single-mode-multimode-single-mode fiber structures in a ratiometric power measurement scheme.
    Hatta AM; Semenova Y; Wu Q; Farrell G
    Appl Opt; 2010 Jan; 49(3):536-41. PubMed ID: 20090822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high sensitive fiber-optic strain sensor with tunable temperature sensitivity for temperature-compensation measurement.
    Hu J; Huang H; Bai M; Zhan T; Yang Z; Yu Y; Qu B
    Sci Rep; 2017 Feb; 7():42430. PubMed ID: 28205595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-insensitive optical fiber strain sensor with ultra-low detection limit based on capillary-taper temperature compensation structure.
    Lang C; Liu Y; Cao K; Qu S
    Opt Express; 2018 Jan; 26(1):477-487. PubMed ID: 29328324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.