These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 29092195)

  • 1. Surface plasmon polariton amplification in a single-walled carbon nanotube.
    Kadochkin AS; Moiseev SG; Dadoenkova YS; Svetukhin VV; Zolotovskii IO
    Opt Express; 2017 Oct; 25(22):27165-27171. PubMed ID: 29092195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Open Resonator Electric Spaser.
    Liu B; Zhu W; Gunapala SD; Stockman MI; Premaratne M
    ACS Nano; 2017 Dec; 11(12):12573-12582. PubMed ID: 29087690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-plane remote photoluminescence excitation of carbon nanotube by propagating surface plasmon.
    Rai P; Hartmann N; Berthelot J; Colas-des-Francs G; Hartschuh A; Bouhelier A
    Opt Lett; 2012 Nov; 37(22):4711-3. PubMed ID: 23164888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring terahertz surface plasmon wave through free-standing multi-walled carbon nanotubes metasurface.
    Wang Y; Cui Z; Zhu D; Zhang X; Qian L
    Opt Express; 2018 Jun; 26(12):15343-15352. PubMed ID: 30114783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strongly coupled exciton-surface plasmon polariton from excited-subband transitions of single-walled carbon nanotubes.
    Zhou W; Zhang X; Zhang Y; Tian C; Xu C
    Opt Express; 2017 Dec; 25(25):32142-32149. PubMed ID: 29245878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spaser made of graphene and carbon nanotubes.
    Rupasinghe C; Rukhlenko ID; Premaratne M
    ACS Nano; 2014 Mar; 8(3):2431-8. PubMed ID: 24559464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition from surface phonon-polariton to surface phonon-plasmon-polariton by thermal injection of free carriers.
    El-Helou Y; Wu KT; Bruyant A; Woon WY; Kazan M
    J Phys Condens Matter; 2022 Apr; 34(26):. PubMed ID: 35417887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terahertz Wave Propagation in a Nanotube Conveying Fluid Taking into Account Surface Effect.
    Zhang YW; Yang TZ; Zang J; Fang B
    Materials (Basel); 2013 Jun; 6(6):2393-2399. PubMed ID: 28809279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. π and π + σ plasmon localization in single-walled carbon nanotube meta-materials.
    Kramberger C; Thurakitseree T; Maruyama S; Knupfer M
    Nanotechnology; 2013 Oct; 24(40):405202. PubMed ID: 24029462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherent surface plasmon polariton amplification via free-electron pumping.
    Zhang D; Zeng Y; Bai Y; Li Z; Tian Y; Li R
    Nature; 2022 Nov; 611(7934):55-60. PubMed ID: 36323808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube.
    Zhong Z; Gabor NM; Sharping JE; Gaeta AL; McEuen PL
    Nat Nanotechnol; 2008 Apr; 3(4):201-5. PubMed ID: 18654503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires.
    Maier SA; Andrews SR; Martín-Moreno L; García-Vidal FJ
    Phys Rev Lett; 2006 Oct; 97(17):176805. PubMed ID: 17155495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation of Surface Plasmon Resonance on Multiwalled Carbon Nanotube Metasurfaces for Pesticide Sensors.
    Wang Y; Cui Z; Zhang X; Zhang X; Zhu Y; Chen S; Hu H
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):52082-52088. PubMed ID: 33151054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free electrons excited SPASER.
    Ye Y; Liu F; Cui K; Feng X; Zhang W; Huang Y
    Opt Express; 2018 Nov; 26(24):31402-31412. PubMed ID: 30650726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exact surface-plasmon polariton solutions at a lossy interface.
    Norrman A; Setälä T; Friberg AT
    Opt Lett; 2013 Apr; 38(7):1119-21. PubMed ID: 23546263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes.
    Bichoutskaia E; Pyper NC
    J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon polariton enhanced by optical parametric amplification in nonlinear hybrid waveguide.
    Lu FF; Li T; Xu J; Xie ZD; Li L; Zhu SN; Zhu YY
    Opt Express; 2011 Feb; 19(4):2858-65. PubMed ID: 21369107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Switching terahertz wave with grating-coupled Kretschmann configuration.
    Jiu-Sheng L
    Opt Express; 2017 Aug; 25(16):19422-19428. PubMed ID: 29041136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotube bundles as molecular assemblies for the detection of polycyclic aromatic hydrocarbons: surface-enhanced resonance Raman spectroscopy and theoretical studies.
    Leyton P; Gómez-Jeria JS; Sanchez-Cortes S; Domingo C; Campos-Vallette M
    J Phys Chem B; 2006 Apr; 110(13):6470-4. PubMed ID: 16570943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.