These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 29092195)

  • 21. Chaotic region of elastically restrained single-walled carbon nanotube.
    Hu W; Song M; Deng Z; Zou H; Wei B
    Chaos; 2017 Feb; 27(2):023118. PubMed ID: 28249407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strong and Broadly Tunable Plasmon Resonances in Thick Films of Aligned Carbon Nanotubes.
    Chiu KC; Falk AL; Ho PH; Farmer DB; Tulevski G; Lee YH; Avouris P; Han SJ
    Nano Lett; 2017 Sep; 17(9):5641-5645. PubMed ID: 28763225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-dimensional surface phonon polaritons in boron nitride nanotubes.
    Xu XG; Ghamsari BG; Jiang JH; Gilburd L; Andreev GO; Zhi C; Bando Y; Golberg D; Berini P; Walker GC
    Nat Commun; 2014 Aug; 5():4782. PubMed ID: 25154586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Behaviors of Electromagnetic Wave Propagation in Double-Walled Carbon Nanotubes.
    Basmaci AN
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Detection of single-walled carbon nanotube bundles by tip-enhanced Raman spectroscopy].
    Wu XB; Wang J; Wang R; Xu JY; Tian Q; Yu JY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Oct; 29(10):2681-5. PubMed ID: 20038037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth mechanism of single-walled carbon nanotube from catalytic reaction inside carbon nanotube template.
    Izu Y; Shiomi J; Takagi Y; Okada S; Maruyama S
    ACS Nano; 2010 Aug; 4(8):4769-75. PubMed ID: 20731452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-density metallic nanogap arrays for the sensitive detection of single-walled carbon nanotube thin films.
    Park HR; Namgung S; Chen X; Oh SH
    Faraday Discuss; 2015; 178():195-201. PubMed ID: 25760454
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effective energy coupling and preservation in a surface plasmon-light emitter coupling system on a metal nanostructure.
    Shen CW; Wang JY; Chuang WH; Chen HL; Lu YC; Kiang YW; Yang CC; Yang YJ
    Nanotechnology; 2009 Apr; 20(13):135202. PubMed ID: 19420488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electromagnetic field interacting with a semi-infinite plasma.
    Apostol M; Vaman G
    J Opt Soc Am A Opt Image Sci Vis; 2009 Jul; 26(7):1747-53. PubMed ID: 19568311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isotherm, thermodynamic, kinetics, and adsorption mechanism studies of Ethidium bromide by single-walled carbon nanotube and carboxylate group functionalized single-walled carbon nanotube.
    Moradi O; Fakhri A; Adami S; Adami S
    J Colloid Interface Sci; 2013 Apr; 395():224-9. PubMed ID: 23261335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An explicit formula for metal wire plasmon of terahertz wave.
    Yang J; Cao Q; Zhou C
    Opt Express; 2009 Nov; 17(23):20806-15. PubMed ID: 19997314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Excitation energy transfer from a fluorophore to single-walled carbon nanotubes.
    Swathi RS; Sebastian KL
    J Chem Phys; 2010 Mar; 132(10):104502. PubMed ID: 20232966
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Terahertz-infrared electrodynamics of single-wall carbon nanotube films.
    Zhukova ES; Grebenko AK; Bubis AV; Prokhorov AS; Belyanchikov MA; Tsapenko AP; Gilshteyn EP; Kopylova DS; Gladush YG; Anisimov AS; Anzin VB; Nasibulin AG; Gorshunov BP
    Nanotechnology; 2017 Nov; 28(44):445204. PubMed ID: 28832014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption of Bacillus subtilis on single-walled carbon nanotube aggregates, activated carbon and NanoCeram.
    Upadhyayula VK; Deng S; Smith GB; Mitchell MC
    Water Res; 2009 Jan; 43(1):148-56. PubMed ID: 18929383
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.
    Jain A; Homayoun A; Bannister CW; Yum K
    Biotechnol J; 2015 Mar; 10(3):447-59. PubMed ID: 25676253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrodynamic interaction between a nanoparticle and the surface of a solid.
    Kysylychyn D; Piatnytsia V; Lozovski V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052403. PubMed ID: 24329275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmon enhanced Raman scattering effect for an atom near a carbon nanotube.
    Bondarev IV
    Opt Express; 2015 Feb; 23(4):3971-84. PubMed ID: 25836436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theory of noise in high-gain surface plasmon-polariton amplifiers incorporating dipolar gain media.
    De Leon I; Berini P
    Opt Express; 2011 Oct; 19(21):20506-17. PubMed ID: 21997058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physical nature of volume plasmon polaritons in hyperbolic metamaterials.
    Zhukovsky SV; Kidwai O; Sipe JE
    Opt Express; 2013 Jun; 21(12):14982-7. PubMed ID: 23787686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrical excitation of surface plasmons by an individual carbon nanotube transistor.
    Rai P; Hartmann N; Berthelot J; Arocas J; Colas des Francs G; Hartschuh A; Bouhelier A
    Phys Rev Lett; 2013 Jul; 111(2):026804. PubMed ID: 23889430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.