These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 2909233)

  • 21. Flexible Fiber-Optic High-Speed Imaging of Vocal Fold Vibration: A Preliminary Report.
    Woo P; Baxter P
    J Voice; 2017 Mar; 31(2):175-181. PubMed ID: 28325351
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Comparison of Cepstral Peak Prominence Measures From Two Acoustic Analysis Programs.
    Watts CR; Awan SN; Maryn Y
    J Voice; 2017 May; 31(3):387.e1-387.e10. PubMed ID: 27751661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vocal fold vibration patterns and modes of phonation.
    Sundberg J
    Folia Phoniatr Logop; 1995; 47(4):218-28. PubMed ID: 7670555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of Local Intrinsic Dimension for Acoustical Analysis of Voice Signal Components.
    Liu B; Polce E; Jiang J
    Ann Otol Rhinol Laryngol; 2018 Sep; 127(9):588-597. PubMed ID: 29911408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A system for the automated data-acquisition of fast transient signals in excitable membranes.
    Bustamante JO
    Int J Biomed Comput; 1988; 22(3-4):273-83. PubMed ID: 2457559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deviant vocal fold vibration as observed during videokymography: the effect on voice quality.
    Verdonck-de Leeuw IM; Festen JM; Mahieu HF
    J Voice; 2001 Sep; 15(3):313-22. PubMed ID: 11575628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Smartphones Offer New Opportunities in Clinical Voice Research.
    Manfredi C; Lebacq J; Cantarella G; Schoentgen J; Orlandi S; Bandini A; DeJonckere PH
    J Voice; 2017 Jan; 31(1):111.e1-111.e7. PubMed ID: 27068549
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Voice Disorders in Teachers: Clinical, Videolaryngoscopical, and Vocal Aspects.
    Pereira ER; Tavares EL; Martins RH
    J Voice; 2015 Sep; 29(5):564-71. PubMed ID: 25704475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microcomputer-based instrumentation systems.
    Bergeron B; Locke S
    MD Comput; 1990; 7(3):178-84. PubMed ID: 2348760
    [No Abstract]   [Full Text] [Related]  

  • 30. Integrating voice evaluation: correlation between acoustic and audio-perceptual measures.
    Vaz Freitas S; Melo Pestana P; Almeida V; Ferreira A
    J Voice; 2015 May; 29(3):390.e1-7. PubMed ID: 25619471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of unilateral vocal cord paralysis on objective voice measures obtained by Praat.
    Oguz H; Demirci M; Safak MA; Arslan N; Islam A; Kargin S
    Eur Arch Otorhinolaryngol; 2007 Mar; 264(3):257-61. PubMed ID: 17033828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The quantitative analysis of voice disease based on fractal method].
    Bu F; Yu P; Ma L; Cao P; Cheng J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):254-5, 264. PubMed ID: 11450547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement of signal period on a personal microcomputer and its application to the analysis of cardiac interval and blood pressure.
    Van Vliet BN; West NH; Road JD
    Comput Biol Med; 1987; 17(3):143-50. PubMed ID: 3665446
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Voice outcomes after transoral laser microsurgery for early glottic cancer-considering signal type and smoothed cepstral peak prominence.
    Stone D; McCabe P; Palme CE; Heard R; Eastwood C; Riffat F; Madill C
    J Voice; 2015 May; 29(3):370-81. PubMed ID: 25301299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards Objective Voice Assessment: The Diplophonia Diagram.
    Aichinger P; Roesner I; Schneider-Stickler B; Leonhard M; Denk-Linnert DM; Bigenzahn W; Fuchs AK; Hagmüller M; Kubin G
    J Voice; 2017 Mar; 31(2):253.e17-253.e26. PubMed ID: 27473932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Voice in chronic renal failure.
    Kumar RB; Bhat JS
    J Voice; 2010 Nov; 24(6):690-3. PubMed ID: 19811891
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated Electroglottographic Inflection Events Detection. A Pilot Study.
    Codino J; Torres ME; Rubin A; Jackson-Menaldi C
    J Voice; 2016 Nov; 30(6):768.e1-768.e10. PubMed ID: 26795967
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validity of jitter measures in non-quasi-periodic voices. Part II: the effect of noise.
    Manfredi C; Giordano A; Schoentgen J; Fraj S; Bocchi L; Dejonckere P
    Logoped Phoniatr Vocol; 2011 Jul; 36(2):78-89. PubMed ID: 21609247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discrimination between pathological and normal voices using GMM-SVM approach.
    Wang X; Zhang J; Yan Y
    J Voice; 2011 Jan; 25(1):38-43. PubMed ID: 20137892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using Rate of Divergence as an Objective Measure to Differentiate between Voice Signal Types Based on the Amount of Disorder in the Signal.
    Calawerts WM; Lin L; Sprott JC; Jiang JJ
    J Voice; 2017 Jan; 31(1):16-23. PubMed ID: 26920858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.