These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 29092330)

  • 21. All-Dielectric Terahertz Plasmonic Metamaterial Absorbers and High-Sensitivity Sensing.
    Wang Y; Zhu D; Cui Z; Hou L; Lin L; Qu F; Liu X; Nie P
    ACS Omega; 2019 Nov; 4(20):18645-18652. PubMed ID: 31737824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Triple-Band Anisotropic Perfect Absorbers Based on α-Phase MoO
    Tang B; Yang N; Song X; Jin G; Su J
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443892
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor.
    Wu D; Liu Y; Li R; Chen L; Ma R; Liu C; Ye H
    Nanoscale Res Lett; 2016 Dec; 11(1):483. PubMed ID: 27807825
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiband-switchability and high-absorptivity of a metamaterial perfect absorber based on a plasmonic resonant structure in the near-infrared region.
    Liang J; Chen Y; Zhou Z; Chen S
    RSC Adv; 2022 Oct; 12(48):30871-30878. PubMed ID: 36349026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Narrow-Band Multi-Resonant Metamaterial in Near-IR.
    Ali F; Aksu S
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33202666
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances.
    Yoo YJ; Kim YJ; Van Tuong P; Rhee JY; Kim KW; Jang WH; Kim YH; Cheong H; Lee Y
    Opt Express; 2013 Dec; 21(26):32484-90. PubMed ID: 24514841
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Boosting figures of merit of cavity plasmon resonance based refractive index sensing in dielectric-metal core-shell resonators.
    Li Z; Sun R; Zhang C; Wan M; Gu P; Shen Q; Chen Z; Wang Z
    Opt Express; 2016 Aug; 24(17):19895-904. PubMed ID: 27557265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.
    Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime.
    Shu S; Li Z; Li YY
    Opt Express; 2013 Oct; 21(21):25307-15. PubMed ID: 24150371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultra-Narrow Band Mid-Infrared Perfect Absorber Based on Hybrid Dielectric Metasurface.
    Chen S; Chen Z; Liu J; Cheng J; Zhou Y; Xiao L; Chen K
    Nanomaterials (Basel); 2019 Sep; 9(10):. PubMed ID: 31547054
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elliptical metallic rings-shaped fractal metamaterial absorber in the visible regime.
    Bilal RMH; Saeed MA; Choudhury PK; Baqir MA; Kamal W; Ali MM; Rahim AA
    Sci Rep; 2020 Aug; 10(1):14035. PubMed ID: 32820192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance enhancement due to a top dielectric coating on a metamaterial perfect absorber.
    Pradhan JK; Gopal Achanta V; Agarwal AK; Anantha Ramakrishna S
    Appl Opt; 2020 Jun; 59(17):E118-E125. PubMed ID: 32543522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal-free plasmonic refractory core-shell nanowires for tunable all-dielectric broadband perfect absorbers.
    Zhang H; Liu Z; Zhong H; Liu G; Liu X; Wang J
    Opt Express; 2020 Nov; 28(24):37049-37057. PubMed ID: 33379786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials.
    Liu Y; Zhong R; Huang J; Lv Y; Han C; Liu S
    Opt Express; 2019 Mar; 27(5):7393-7404. PubMed ID: 30876304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-band metamaterial absorber based on the arrangement of donut-type resonators.
    Park JW; Tuong PV; Rhee JY; Kim KW; Jang WH; Choi EH; Chen LY; Lee Y
    Opt Express; 2013 Apr; 21(8):9691-702. PubMed ID: 23609678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material.
    Mou N; Liu X; Wei T; Dong H; He Q; Zhou L; Zhang Y; Zhang L; Sun S
    Nanoscale; 2020 Mar; 12(9):5374-5379. PubMed ID: 31994580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polarization-independent broad-band nearly perfect absorbers in the visible regime.
    Lin CH; Chern RL; Lin HY
    Opt Express; 2011 Jan; 19(2):415-24. PubMed ID: 21263581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Narrowband and flexible perfect absorber based on a thin-film nano-resonator incorporating a dielectric overlay.
    Park CS; Lee SS
    Sci Rep; 2020 Oct; 10(1):17727. PubMed ID: 33082497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators.
    Gu P; Wan M; Wu W; Chen Z; Wang Z
    Nanoscale; 2016 May; 8(19):10358-63. PubMed ID: 27139034
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure.
    Wang BX; Wang GZ; Sang T; Wang LL
    Sci Rep; 2017 Jan; 7():41373. PubMed ID: 28120897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.