These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29092372)

  • 21. Photon blockade via quantum interference in a strong coupling qubit-cavity system.
    Deng WW; Li GX; Qin H
    Opt Express; 2017 Mar; 25(6):6767-6783. PubMed ID: 28381020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED.
    Xu P; Yang XC; Mei F; Xue ZY
    Sci Rep; 2016 Jan; 6():18695. PubMed ID: 26804326
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dispersive photon blockade in a superconducting circuit.
    Hoffman AJ; Srinivasan SJ; Schmidt S; Spietz L; Aumentado J; Türeci HE; Houck AA
    Phys Rev Lett; 2011 Jul; 107(5):053602. PubMed ID: 21867068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Encoding scheme using quantum dots for single logical qubit information onto four-photon decoherence-free states.
    Heo J; Hong C; Kang MS; Yang HJ
    Sci Rep; 2020 Sep; 10(1):15334. PubMed ID: 32948781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A two-qubit logic gate in silicon.
    Veldhorst M; Yang CH; Hwang JC; Huang W; Dehollain JP; Muhonen JT; Simmons S; Laucht A; Hudson FE; Itoh KM; Morello A; Dzurak AS
    Nature; 2015 Oct; 526(7573):410-4. PubMed ID: 26436453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast generation of three-qubit Greenberger-Horne-Zeilinger state based on the Lewis-Riesenfeld invariants in coupled cavities.
    Huang XB; Chen YH; Wang Z
    Sci Rep; 2016 May; 6():25707. PubMed ID: 27216575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities.
    Wang HF; Zhu AD; Zhang S
    Opt Lett; 2014 Mar; 39(6):1489-92. PubMed ID: 24690820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photonic scheme of discrete quantum Fourier transform for quantum algorithms via quantum dots.
    Heo J; Won K; Yang HJ; Hong JP; Choi SG
    Sci Rep; 2019 Aug; 9(1):12440. PubMed ID: 31455794
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proposal for manipulating and detecting spin and orbital States of trapped electrons on helium using cavity quantum electrodynamics.
    Schuster DI; Fragner A; Dykman MI; Lyon SA; Schoelkopf RJ
    Phys Rev Lett; 2010 Jul; 105(4):040503. PubMed ID: 20867827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous Bistability of a Qubit and Resonator in Circuit Quantum Electrodynamics.
    Mavrogordatos TK; Tancredi G; Elliott M; Peterer MJ; Patterson A; Rahamim J; Leek PJ; Ginossar E; Szymańska MH
    Phys Rev Lett; 2017 Jan; 118(4):040402. PubMed ID: 28186805
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A photon-photon quantum gate based on a single atom in an optical resonator.
    Hacker B; Welte S; Rempe G; Ritter S
    Nature; 2016 Aug; 536(7615):193-6. PubMed ID: 27383791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An ultra-high gain single-photon transistor in the microwave regime.
    Wang Z; Bao Z; Li Y; Wu Y; Cai W; Wang W; Han X; Wang J; Song Y; Sun L; Zhang H; Duan L
    Nat Commun; 2022 Oct; 13(1):6104. PubMed ID: 36243719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strong Coupling Optomechanics Mediated by a Qubit in the Dispersive Regime.
    Aporvari AS; Vitali D
    Entropy (Basel); 2021 Jul; 23(8):. PubMed ID: 34441106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.
    Wallraff A; Schuster DI; Blais A; Frunzio L; Huang R; Majer J; Kumar S; Girvin SM; Schoelkopf RJ
    Nature; 2004 Sep; 431(7005):162-7. PubMed ID: 15356625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient routing of single photons by one atom and a microtoroidal cavity.
    Aoki T; Parkins AS; Alton DJ; Regal CA; Dayan B; Ostby E; Vahala KJ; Kimble HJ
    Phys Rev Lett; 2009 Feb; 102(8):083601. PubMed ID: 19257737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cavity quantum electrodynamics with separate photon storage and qubit readout modes.
    Leek PJ; Baur M; Fink JM; Bianchetti R; Steffen L; Filipp S; Wallraff A
    Phys Rev Lett; 2010 Mar; 104(10):100504. PubMed ID: 20366408
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resolving vacuum fluctuations in an electrical circuit by measuring the Lamb shift.
    Fragner A; Göppl M; Fink JM; Baur M; Bianchetti R; Leek PJ; Blais A; Wallraff A
    Science; 2008 Nov; 322(5906):1357-60. PubMed ID: 19039130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonclassical Photon Number Distribution in a Superconducting Cavity under a Squeezed Drive.
    Kono S; Masuyama Y; Ishikawa T; Tabuchi Y; Yamazaki R; Usami K; Koshino K; Nakamura Y
    Phys Rev Lett; 2017 Jul; 119(2):023602. PubMed ID: 28753365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.