These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 29092479)

  • 1. Shock drive capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the Linac Coherent Light Source.
    Brown SB; Hashim A; Gleason A; Galtier E; Nam I; Xing Z; Fry A; MacKinnon A; Nagler B; Granados E; Lee HJ
    Rev Sci Instrum; 2017 Oct; 88(10):105113. PubMed ID: 29092479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring Mbar shock conditions and isochorically heated aluminum at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (invited).
    Fletcher LB; Lee HJ; Barbrel B; Gauthier M; Galtier E; Nagler B; Döppner T; LePape S; Ma T; Pak A; Turnbull D; White T; Gregori G; Wei M; Falcone RW; Heimann P; Zastrau U; Hastings JB; Glenzer SH
    Rev Sci Instrum; 2014 Nov; 85(11):11E702. PubMed ID: 25430365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Matter in Extreme Conditions instrument at the Linac Coherent Light Source.
    Nagler B; Arnold B; Bouchard G; Boyce RF; Boyce RM; Callen A; Campell M; Curiel R; Galtier E; Garofoli J; Granados E; Hastings J; Hays G; Heimann P; Lee RW; Milathianaki D; Plummer L; Schropp A; Wallace A; Welch M; White W; Xing Z; Yin J; Young J; Zastrau U; Lee HJ
    J Synchrotron Radiat; 2015 May; 22(3):520-5. PubMed ID: 25931063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a broadband reflectivity diagnostic for laser driven shock compression experiments.
    Ali SJ; Bolme CA; Collins GW; Jeanloz R
    Rev Sci Instrum; 2015 Apr; 86(4):043112. PubMed ID: 25933846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New experimental platform to study high density laser-compressed matter.
    Gauthier M; Fletcher LB; Ravasio A; Galtier E; Gamboa EJ; Granados E; Hastings JB; Heimann P; Lee HJ; Nagler B; Schropp A; Gleason A; Döppner T; LePape S; Ma T; Pak A; MacDonald MJ; Ali S; Barbrel B; Falcone R; Kraus D; Chen Z; Mo M; Wei M; Glenzer SH
    Rev Sci Instrum; 2014 Nov; 85(11):11E616. PubMed ID: 25430362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-critical phase explosion promoting breakdown plasma ignition during laser ablation of graphite.
    Ionin AA; Kudryashov SI; Seleznev LV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016404. PubMed ID: 20866744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shock pressures induced in condensed matter by laser ablation.
    Swift DC; Tierney TE; Kopp RA; Gammel JT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036406. PubMed ID: 15089414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High pressure phase transition and strength estimate in polycrystalline alumina during laser-driven shock compression.
    Hari A; Hari R; Heighway PG; Smith RF; Duffy TS; Sims M; Singh S; Fratanduono DE; Bolme CA; Gleason AE; Coppari F; Lee HJ; Granados E; Heimann P; Eggert JH; Wicks JK
    J Phys Condens Matter; 2022 Dec; 35(9):. PubMed ID: 36575863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system.
    Mrochen M; Schelling U; Wuellner C; Donitzky C
    J Cataract Refract Surg; 2009 Feb; 35(2):363-73. PubMed ID: 19185256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myocardium tissue ablation with high-peak-power nanosecond 1,064- and 532-nm pulsed lasers: influence of laser-induced plasma.
    Ogura M; Sato S; Ishihara M; Kawauchi S; Arai T; Matsui T; Kurita A; Kikuchi M; Ashida H; Obara M
    Lasers Surg Med; 2002; 31(2):136-41. PubMed ID: 12210598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a fiber-optic laser delivery system capable of delivering 213 and 266 nm pulsed Nd:YAG laser radiation for tissue ablation in a fluid environment.
    Miller J; Yu XB; Yu PK; Cringle SJ; Yu DY
    Appl Opt; 2011 Feb; 50(6):876-85. PubMed ID: 21343967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoplasma dynamics of single large xenon clusters irradiated with superintense x-ray pulses from the linac coherent light source free-electron laser.
    Gorkhover T; Adolph M; Rupp D; Schorb S; Epp SW; Erk B; Foucar L; Hartmann R; Kimmel N; Kühnel KU; Rolles D; Rudek B; Rudenko A; Andritschke R; Aquila A; Bozek JD; Coppola N; Erke T; Filsinger F; Gorke H; Graafsma H; Gumprecht L; Hauser G; Herrmann S; Hirsemann H; Hömke A; Holl P; Kaiser C; Krasniqi F; Meyer JH; Matysek M; Messerschmidt M; Miessner D; Nilsson B; Pietschner D; Potdevin G; Reich C; Schaller G; Schmidt C; Schopper F; Schröter CD; Schulz J; Soltau H; Weidenspointner G; Schlichting I; Strüder L; Ullrich J; Möller T; Bostedt C
    Phys Rev Lett; 2012 Jun; 108(24):245005. PubMed ID: 23004284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of corneal ablation with picosecond laser pulses at 211 nm and 263 nm.
    Hu XH; Juhasz T
    Lasers Surg Med; 1996; 18(4):373-80. PubMed ID: 8732576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hollow-waveguide-based nanosecond, near-infrared pulsed laser ablation of tissue.
    Sato S; Shi YW; Matsuura Y; Miyagi M; Ashida H
    Lasers Surg Med; 2005 Aug; 37(2):149-54. PubMed ID: 16097010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast X-Ray Diffraction Studies of the Phase Transitions and Equation of State of Scandium Shock Compressed to 82 GPa.
    Briggs R; Gorman MG; Coleman AL; McWilliams RS; McBride EE; McGonegle D; Wark JS; Peacock L; Rothman S; Macleod SG; Bolme CA; Gleason AE; Collins GW; Eggert JH; Fratanduono DE; Smith RF; Galtier E; Granados E; Lee HJ; Nagler B; Nam I; Xing Z; McMahon MI
    Phys Rev Lett; 2017 Jan; 118(2):025501. PubMed ID: 28128621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct-drive measurements of laser-imprint-induced shock velocity nonuniformities.
    Peebles JL; Hu SX; Theobald W; Goncharov VN; Whiting N; Celliers PM; Ali SJ; Duchateau G; Campbell EM; Boehly TR; Regan SP
    Phys Rev E; 2019 Jun; 99(6-1):063208. PubMed ID: 31330608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherence properties of individual femtosecond pulses of an x-ray free-electron laser.
    Vartanyants IA; Singer A; Mancuso AP; Yefanov OM; Sakdinawat A; Liu Y; Bang E; Williams GJ; Cadenazzi G; Abbey B; Sinn H; Attwood D; Nugent KA; Weckert E; Wang T; Zhu D; Wu B; Graves C; Scherz A; Turner JJ; Schlotter WF; Messerschmidt M; Lüning J; Acremann Y; Heimann P; Mancini DC; Joshi V; Krzywinski J; Soufli R; Fernandez-Perea M; Hau-Riege S; Peele AG; Feng Y; Krupin O; Moeller S; Wurth W
    Phys Rev Lett; 2011 Sep; 107(14):144801. PubMed ID: 22107200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser pulses into bullets: tabletop shock experiments.
    Dlott DD
    Phys Chem Chem Phys; 2022 May; 24(18):10653-10666. PubMed ID: 35471265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser.
    Schlotter WF; Turner JJ; Rowen M; Heimann P; Holmes M; Krupin O; Messerschmidt M; Moeller S; Krzywinski J; Soufli R; Fernández-Perea M; Kelez N; Lee S; Coffee R; Hays G; Beye M; Gerken N; Sorgenfrei F; Hau-Riege S; Juha L; Chalupsky J; Hajkova V; Mancuso AP; Singer A; Yefanov O; Vartanyants IA; Cadenazzi G; Abbey B; Nugent KA; Sinn H; Lüning J; Schaffert S; Eisebitt S; Lee WS; Scherz A; Nilsson AR; Wurth W
    Rev Sci Instrum; 2012 Apr; 83(4):043107. PubMed ID: 22559515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.